A tale of two integrals

Calculus Level 5

0 x e π x e 2 π x 1 d x = 1 a a + 4 π 4 0 x 3 e π x 3 e π x 3 1 d x = 1 a 3 2 a + 2 π 4 \begin{aligned} \int_0^\infty \frac {x e^{-\pi \sqrt x}}{e^{2\pi \sqrt x}-1} dx & = \frac 1a - \frac {a+4} {\pi^4} \\ \int_0^\infty \frac {\sqrt[3] x e^{-\pi \sqrt[3]x}}{e^{\pi \sqrt[3]x}-1} dx & = \frac 1{a-3} - \frac {2a+2} {\pi^4} \end{aligned}

Find the value of a a for which the above two equations hold true.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Mar 10, 2020

For the first integral:

I = 0 x e π x e 2 π x 1 d x \large \displaystyle I = \int_0^{\infty} \frac{xe^{-\pi \sqrt{x}}}{e^{2\pi\sqrt{x}} - 1} dx

Let x = u 2 π 2 x = \frac{u^2}{\pi^2} , d x = 2 u π 2 d u dx = \frac{2u}{\pi^2} du :

I = 2 π 4 0 u 3 e u e 2 u 1 d u \large \displaystyle I = \frac{2}{\pi^4} \int_0^{\infty} \frac{u^3 e^{-u}}{e^{2u}-1}du

Multiplying above and below by e u e^u :

I = 2 π 4 0 u 3 e 3 u e u d u \large \displaystyle I = \frac{2}{\pi^4} \int_0^{\infty} \frac{u^3}{e^{3u}-e^u}du

Expanding in partial fractions in e u e^u :

I = 2 π 4 [ 1 2 0 u 3 e u 1 d u + 1 2 0 u 3 e u + 1 d u 0 u 3 e u d u ] \large \displaystyle I = \frac{2}{\pi^4} \left [ \frac12 \int_0^{\infty} \frac{u^3}{e^u-1} du + \frac12 \int_0^{\infty} \frac{u^3}{e^u+1} du - \int_0^{\infty} u^3e^{-u} du \right ]

Recall that:

0 u s 1 e u 1 d u = Γ ( s ) ζ ( s ) , 0 u s 1 e u + 1 d u = Γ ( s ) η ( s ) , 0 u s 1 e u d u = Γ ( s ) = ( s 1 ) ! \large \displaystyle\int_0^{\infty} \frac{u^{s-1}}{e^u-1} du = \Gamma(s) \zeta(s), \int_0^{\infty} \frac{u^{s-1}}{e^u+1} du = \Gamma(s) \eta(s), \int_0^{\infty} u^{s-1}e^{-u} du = \Gamma(s) = (s-1)!

Where ζ ( s ) \zeta(s) is the Riemann Zeta Function , η ( s ) \eta(s) is the Dirichlet Eta Function and Γ ( s ) \Gamma(s) is the Gamma Function . So:

I = 2 π 4 [ 1 2 ζ ( 4 ) Γ ( 4 ) + 1 2 η ( 4 ) Γ ( 4 ) Γ ( 4 ) ] \large \displaystyle I = \frac{2}{\pi^4} \left [ \frac12 \zeta(4)\Gamma(4) + \frac12 \eta(4) \Gamma(4) - \Gamma(4) \right ]

I = 2 π 4 [ 1 2 π 4 90 3 ! + 1 2 7 π 4 720 3 ! 3 ! ] \large \displaystyle I = \frac{2}{\pi^4} \left [ \frac12 \frac{\pi^4}{90} 3! + \frac12 \frac{7\pi^4}{720} 3!- 3! \right ]

I = 2 π 4 [ π 4 30 + 7 π 4 240 6 ] \large \displaystyle I = \frac{2}{\pi^4} \left [\frac{\pi^4}{30} + \frac{7\pi^4}{240}- 6 \right ]

I = 2 π 4 [ π 4 16 6 ] \large \displaystyle I = \frac{2}{\pi^4} \left [\frac{\pi^4}{16} - 6 \right ]

I = 1 8 12 π 4 \color{#20A900} \boxed{ \large \displaystyle I = \frac18 - \frac{12}{\pi^4} }

So:

a = 8 \color{#3D99F6} \boxed{\large \displaystyle a = 8 }

We already have our answer, but, for the second integral, just make x = u 3 π 3 x = \frac{u^3}{\pi^3} , d x = 3 u 2 π 3 d u dx = \frac{3u^2}{\pi^3} du :

J = 3 π 4 0 u 3 e u e u 1 d u \large \displaystyle J = \frac{3}{\pi^4} \int_0^{\infty} \frac{u^3 e^{-u}}{e^{u}-1}du

Multiplying above and below by e u e^u :

J = 3 π 4 0 u 3 e 2 u e u d u \large \displaystyle J = \frac{3}{\pi^4} \int_0^{\infty} \frac{u^3}{e^{2u}-e^u}du

Expanding in partial fractions in e u e^u :

J = 3 π 4 [ 0 u 3 e u 1 d u 0 u 3 e u d u ] \large \displaystyle J = \frac{3}{\pi^4} \left [ \int_0^{\infty} \frac{u^3}{e^{u}-1}du - \int_0^{\infty} u^3 e^{-u} du \right ]

J = 3 π 4 [ ζ ( 4 ) Γ ( 4 ) Γ ( 4 ) ] \large \displaystyle J = \frac{3}{\pi^4} \left [ \zeta(4) \Gamma(4) - \Gamma(4) \right ]

J = 3 π 4 [ π 4 15 6 ] \large \displaystyle J = \frac{3}{\pi^4} \left [ \frac{\pi^4}{15} - 6 \right ]

J = 1 5 18 π 4 \color{#20A900} \boxed{ \large \displaystyle J = \frac15 - \frac{18}{\pi^4} }

Likewise:

a = 8 \color{#3D99F6} \boxed{\large \displaystyle a = 8 }

Excellent.

Srinivasa Raghava - 1 year, 2 months ago

Log in to reply

Thank you, sir.

Guilherme Niedu - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...