A technique will solve this easily

Algebra Level 1

1 a 2 + 1 b 2 + 1 c 2 + 2 ( a 2 + b 2 + c 2 ) 3 \large \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2(a^2+b^2+c^2)}{3} Let a , b a,b and c c be positive reals satisfy a + b + c = 3 a+b+c=3 . Find the minimum value of the expression above.

Give your answer to 2 decimal places


The answer is 5.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Chew-Seong Cheong
May 23, 2016

Using AM-GM inequality , we have:

a + b + c 3 a b c 3 3 3 a b c 3 a b c 1 Equality happens when a = b = c = 1 1 a 2 + 1 b 2 + 1 c 2 3 ( a b c ) 2 3 = 3 Equality happens when a = b = c = 1 a 2 + b 2 + c 2 3 ( a b c ) 2 3 = 3 Equality happens when a = b = c = 1 \begin{aligned} a + b + c & \ge 3 \sqrt [3] {abc} \\ 3 & \ge 3 \sqrt [3] {abc} \\ \implies abc & \le 1 \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{Equality happens when }a=b=c=1} \\ \color{#3D99F6}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} & \color{#3D99F6}{\ge \frac{3}{\sqrt [3] {(abc)^2}} = 3 \quad \quad \small \text{Equality happens when }a=b=c=1} \\ \color{#D61F06}{a^2 + b^2 + c^2} & \color{#D61F06}{\ge 3 \sqrt [3] {(abc)^2} = 3 \quad \quad \small \text{Equality happens when }a=b=c=1} \end{aligned}

Therefore,

1 a 2 + 1 b 2 + 1 c 2 + 2 3 ( a 2 + b 2 + c 2 ) 3 + 2 3 ( 3 ) = 5 Equality happens when a = b = c = 1 \begin{aligned} \color{#3D99F6}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} + \frac{2}{3}(\color{#D61F06}{a^2 + b^2 + c^2}) \ge \color{#3D99F6}{3} + \frac{2}{3}(\color{#D61F06}{3}) = \boxed{5} \quad \quad \small \color{#3D99F6}{\text{Equality happens when }a=b=c=1} \end{aligned}

Instead of using AM-GM to get a 2 + b 2 + c 2 3 ( a b c ) 2 3 = 3 a^2+b^2+c^2\geq 3\sqrt[3]{(abc)^2}=3 , you can apply Cauchy-Schwarz a 2 + b 2 + c 2 ( a + b + c ) 2 3 = 3 a^2+b^2+c^2\geq\frac{(a+b+c)^2}{3}=3 , it would be more reasonable

P C - 5 years ago

the first red step is wrong:Cauchy can do it

wq y - 2 years, 12 months ago
P C
May 23, 2016

Call the expression P P , we can rewrite it like this P = 1 a 2 + 2 3 a 2 + 1 b 2 + 2 3 b 2 + 1 c 2 + 2 3 c 2 P=\frac{1}{a^2}+\frac{2}{3}a^2+\frac{1}{b^2}+\frac{2}{3}b^2+\frac{1}{c^2}+\frac{2}{3}c^2 Now we need to prove that 1 a 2 + 2 3 a 2 5 3 2 3 ( a 1 ) ( ) \frac{1}{a^2}+\frac{2}{3}a^2\geq\frac{5}{3}-\frac{2}{3}(a-1) \ (*) ( a 1 ) 2 ( 2 a 2 + 6 a + 3 ) a 2 0 ( T r u e f o r e v e r y a > 0 ) \Leftrightarrow\frac{(a-1)^2(2a^2+6a+3)}{a^2}\geq 0 \ (True \ for\ every \ a>0) Same goes for b b and c c then combine all 3 inequalities P 5 2 3 ( a + b + c 3 ) = 5 P\geq 5-\frac{2}{3}(a+b+c-3)=5 So P m i n = 5 P_{min}=5 , the equality holds when a = b = c = 1 a=b=c=1

  • For any one questioned: how could you arrive at ( ) (*) , check out U.C.T (Undefined Coefficient Technique)
Sabhrant Sachan
May 23, 2016

Relevant wiki: Arithmetic Mean - Geometric Mean

The Above Expression can be rewritten as : ( 1 a + 1 b + 1 c ) 2 2 ( 1 a b + 1 b c + 1 c a ) + 2 3 [ ( a + b + c ) 2 2 ( a b + b c + c a ) ] ( a b + b c + c a a b c ) 2 2 ( a + b + c a b c ) + 2 3 [ ( a + b + c ) 2 2 ( a b + b c + c a ) ] \text{The Above Expression can be rewritten as : } \\ (\dfrac1{a}+\dfrac1{b}+\dfrac1{c})^2-2(\dfrac1{ab}+\dfrac1{bc}+\dfrac1{ca})+\dfrac23[(a+b+c)^2-2(ab+bc+ca)] \\ (\dfrac{ab+bc+ca}{abc})^2-2(\dfrac{a+b+c}{abc})+\dfrac23[(a+b+c)^2-2(ab+bc+ca)]

It is given that a + b + c = 3 a b c 1 a b + b c + c a 3 ( a 2 b 2 c 2 ) 3 a b + b c + c a 3 Putting the values in the expression, we get : = 9 6 + 2 3 ( 9 6 ) 5 \text{It is given that } a+b+c=3 \implies abc\le1 \\ \implies \dfrac{ab+bc+ca}{3}\ge (a^2b^2c^2)^{3} \implies ab+bc+ca\ge 3 \\ \text{Putting the values in the expression, we get :} \\ = 9-6+\dfrac23(9-6) \\ \implies \color{#3D99F6}{\boxed{5}}

Magnas Bera
Jun 19, 2019

Use TITU'S lemma on (1/a^2 ) +(1/b^2) +(1/c^2) Then by applying am -hm We get the min value of the shown expression as 3 Then we use cauchy Schwarz or titu on a^2 + b^2 +c^2 we get its min value as 3 Then 3×2/3=3 Add 3+2=5

Jake Flom
May 31, 2016

To minimize the equation, let a = b = c = 1. Therefore, a + b + c = 3 a + b + c = 3

The equation now simplifies to: 1 1 2 + 1 1 2 + 1 1 2 + 2 ( 1 + 1 + 1 ) 3 \frac {1} {1^2} + \frac {1} {1^2} + \frac {1} {1^2} + \frac {2(1+1+1)} {3} 3 + 2 = 5 3 + 2 = 5 5 \boxed{5}

This is totally wrong

Magnas Bera - 1 year, 12 months ago
Advaith Kumar
May 19, 2020

note that 1/a^2 + 2a^2/ 3 >= 2sqrt(2/3) by AM-GM. By symmetry, note that if we do the same for b and c and add the 3 inequalities then the min value is 3*2sqrt(3) = 4.90 or 5

Aaryan Maheshwari
Aug 18, 2019

From titu's lemma, 1 / a 2 + 1 / b 2 + 1 / c 2 1/a^2+1/b^2+1/c^2 is greater than or equal to 9 / a 2 + b 2 + c 2 9/a^2+b^2+c^2 Now, by using am-gm on 9 / a 2 + b 2 + c 2 9/a^2+b^2+c^2 and 2 ( a 2 + b 2 + c 2 ) / 3 2(a^2+b^2+c^2)/3 , we get its minimum value as 2 6 2\sqrt{6} . Can anybody tell me where am I wrong?

(I got this problem right because I entered 4.898)

Tristan Chaang
Jul 13, 2017

Using AM-HM,

a 2 + b 2 + c 2 3 3 1 a 2 + 1 b 2 + 1 c 2 \frac{a^2+b^2+c^2}{3} \geq \frac{3}{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}

1 a 2 + 1 b 2 + 1 c 2 9 a 2 + b 2 + c 2 \implies \frac{1}{a^2} + \frac{1}{b^2}+\frac{1}{c^2} \geq \frac{9}{a^2+b^2+c^2}

Using Cauchy-Schwarz Inequality ,

( a 2 + b 2 + c 2 ) ( 1 2 + 1 2 + 1 2 ) ( a + b + c ) 2 = 9 (a^2+b^2+c^2)(1^2+1^2+1^2) \geq (a+b+c)^2 = 9

a 2 + b 2 + c 2 3 \implies a^2+b^2+c^2 \geq 3

1 a 2 + 1 b 2 + 1 c 2 + 2 ( a 2 + b 2 + c 2 ) 3 \therefore \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2(a^2+b^2+c^2)}{3}

9 a 2 + b 2 + c 2 + 2 ( a 2 + b 2 + c 2 ) 3 \geq \frac{9}{a^2+b^2+c^2} +\frac{2(a^2+b^2+c^2)}{3}

9 3 + 2 ( 3 ) 3 \geq \frac{9}{3}+\frac{2(3)}{3}

= 3 + 2 = 3+2 = 5 =\boxed{5} and the equality happens when a = b = c = 1 a=b=c=1

Hduf Hfuf
May 24, 2016

The numbers are at minimum when a=b=c=x So x+x+x=3 So x=1 Substitute it into the equation and the minimum is 5

The numbers being at minimum doesn't mean the equation is at minimum! If the equation was just a^-2 + b^-2 + c^-2, you would've liked to have the largest values possible for a, b and c in order to minimise the value of the equation.

Romain Farthoat - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...