A telescoping product

Algebra Level 2

( 3 + 2 ) ( 3 2 + 2 2 ) ( 3 4 + 2 4 ) ( 3 8 + 2 8 ) = ? (3+2)(3^2+2^2)(3^4+2^4)(3^8+2^8) = \, ?

5 15 5^{15} 3 15 + 2 15 3^{15}+2^{15} 3 16 + 2 16 3^{16}+2^{16} 3 16 2 16 3^{16}-2^{16}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( x + y ) ( x 2 + y 2 ) ( x 4 + y 4 ) ( x 8 + y 8 ) = x 2 y 2 x y ( x 2 + y 2 ) ( x 4 + y 4 ) ( x 8 + y 8 ) (x+y)(x^2+y^2)(x^4+y^4)(x^8+y^8) = \dfrac{x^2-y^2}{x-y} (x^2+y^2)(x^4+y^4)(x^8+y^8) = x 4 y 4 x y ( x 4 + y 4 ) ( x 8 + y 8 ) = x 8 y 8 x y ( x 8 + y 8 ) = \dfrac{x^4-y^4}{x-y} (x^4+y^4)(x^8+y^8) = \dfrac{x^8-y^8}{x-y}(x^8+y^8) = x 16 y 16 x y = \dfrac{x^{16}-y^{16}}{x-y} x = 3 x=3 and y = 2 y=2

It is 3 16 2 16 3 2 = 3 16 2 16 \boxed{\dfrac{3^{16}-2^{16}}{3-2} = 3^{16}-2^{16}}

Leo Yang
Feb 9, 2021

To solve this problem, simply multiple the entire expression by 1. 1 is 3-2, so 1*(3+2)(3^2+2^2)(3^4+2^4)(3^8+2^8) is equal to (3-2)(3+2)(3^2+2^2)(3^4+2^4)(3^8+2^8), which is equal to (3^2-2^2)(3^2+2^2)(3^4+2^4)(3^8+2^8), since a^2-b^2 = (a-b)(a+b). Using this rule, we get that (3^2-2^2)(3^2+2^2) = (3^4-2^4), and (3^4-2^4)(3^4+2^4) = (3^8-2^8), and finally (3^8-2^8)(3^8+2^8) = 3^16-2^16.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...