A to Z: Kids Problem

Algebra Level 2

X = a 1 b 3 c 5 z 51 Y = z 1 y 3 x 5 a 51 \begin{aligned}X&=&a^1\cdot b^3 \cdot c^5\cdot \cdot \cdot \cdot z^{51} \\ Y&=&z^1 \cdot y^3 \cdot x^5 \cdot \cdot \cdot \cdot a^{51} \end{aligned}

If a b c d z = ( 24389 ) 1 156 a \cdot b \cdot c \cdot d \cdot \cdot \cdot \cdot z=(-24389)^{\frac{1}{156}} , then find the value of X Y XY .


The answer is -29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vaibhav Prasad
May 5, 2015

X = a 1 b 3 c 5 z 51 Y = z 1 y 3 x 5 a 51 X Y = ( a 1 b 3 c 5 z 51 ) ( z 1 y 3 x 5 a 51 ) = a 52 b 52 c 52 z 52 X Y = ( a b c z ) 52 X=a^{ 1 }\cdot b^{ 3 }\cdot c^{ 5 }\cdot \cdot \cdot \cdot z^{ 51 }\\ Y=z^{ 1 }\cdot y^{ 3 }\cdot x^{ 5 }\cdot \cdot \cdot \cdot a^{ 51 }\\ \\ \Rightarrow XY=(a^{ 1 }\cdot b^{ 3 }\cdot c^{ 5 }\cdot \cdot \cdot \cdot z^{ 51 })(z^{ 1 }\cdot y^{ 3 }\cdot x^{ 5 }\cdot \cdot \cdot \cdot a^{ 51 })=a^{ 52 }\cdot b^{ 52 }\cdot c^{ 52 }\cdot \cdot \cdot \cdot z^{ 52 }\\ \Rightarrow XY={ (a\cdot b\cdot c\cdot \cdot \cdot \cdot z) }^{ 52 }

Now, since

a b c d z = ( 24389 ) 1 156 ( a b c d z ) 52 = [ ( 24389 ) 1 156 ] 52 X Y = [ ( 24389 ) 1 156 ] 52 = ( 24389 ) 1 3 X Y = 29 a\cdot b\cdot c\cdot d\cdot \cdot \cdot \cdot z=(-24389)^{ \frac { 1 }{ 156 } }\\ \Rightarrow { (a\cdot b\cdot c\cdot d\cdot \cdot \cdot \cdot z) }^{ 52 }={ \left[ (-24389)^{ \frac { 1 }{ 156 } } \right] }^{ 52 }\\ \Rightarrow XY={ \left[ (-24389)^{ \frac { 1 }{ 156 } } \right] }^{ 52 }=(-24389)^{ \frac { 1 }{ 3 } }\\ \Rightarrow XY=\boxed { -29 }

Well, Vaibhav do you know any easy method for finding cube roots??????

Abhisek Mohanty - 6 years ago

Log in to reply

I don't, but it's not too hard to find the cube root of 24389 -24389 .

( 20 ) 3 = 8000 (-20)^3 = -8000

( 30 ) 3 = 27000 (-30)^3 = -27000

The answer is between 20 -20 and 30 -30 , and much closer to 30 -30 . For now, we can guess the answer is an integer. Since the units digit of 24389 -24389 is 9 9 , the units digit of the cube root, when cubed, should also be 9 9 . The only such digit is 9 3 = 729 9^3 = 729 . Since 29 -29 is a good candidate, we can multiply it out to confirm.

Zain Majumder - 2 years, 9 months ago

Nice man!!

Keegan Murphy - 3 years ago
Ahmed Obaiedallah
Jul 11, 2015

X = a 1 b 3 c 5 z 51 Y = z 1 y 3 x 5 a 51 \Large\begin{aligned}X&=&a^1\cdot b^3 \cdot c^5\ldots z^{51} \\ Y&=&z^1 \cdot y^3 \cdot x^5 \ldots a^{51} \end{aligned}

a b c d z = ( 24389 ) 1 156 \Large a \cdot b \cdot c \cdot d \ldots z=(-24389)^{\frac{1}{156}} ,

X Y = ( a 1 b 3 c 5 z 51 ) × ( z 1 y 3 x 5 a 51 \Large XY=(a^{1}\cdot b^{3} \cdot c^{5}\ldots z^{51})\times(z^{1} \cdot y^{3} \cdot x^{5} \ldots a^{51}

= ( a b c d z ) 52 \Large=(a \cdot b \cdot c \cdot d \ldots z)^{52}

= ( ( 24389 ) 1 156 ) 52 \Large=((-24389)^{\frac{1}{156}})^{52}

= ( ( 24389 ) 1 3 \Large=((-24389)^{\frac{1}{3}}

= 24389 3 = 29 \LARGE=\sqrt[3]{-24389}=\boxed{\boxed{\color{#D61F06}{-29}}}

Good solution

Sai Ram - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...