A Totient Quotient

Let ϕ ( n ) \phi(n) be the Euler's totient function . What is ϕ ( 7000000 ) ϕ ( 1000000 ) ? \dfrac{\phi(7000000)}{\phi(1000000)}?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Geoff Pilling
Jan 15, 2017

Relevant wiki: Euler's Totient Function

Since 7 and 1000000 are coprime, ϕ ( 7 ) ϕ ( 1000000 ) = ϕ ( 7000000 ) \phi(7)\phi(1000000) = \phi(7000000) .

So, ϕ ( 7000000 ) ϕ ( 1000000 ) = ϕ ( 7 ) \frac{\phi(7000000)}{\phi(1000000)} = \phi(7) .

And, since 7 is prime, ϕ ( 7 ) = 7 1 = 6 \phi(7) = 7-1 = \boxed{6} .

Thank you fool

Dev Tripathi - 2 years, 10 months ago

Log in to reply

Mind your language

Syed Hamza Khalid - 2 years, 9 months ago
Syed Hamza Khalid
Aug 25, 2018

We have to solve for: ϕ 7000000 ϕ 1000000 \dfrac{\phi 7000000}{\phi 1000000}

Using the formula for ϕ ( n ) \phi (n) we can expand it: = ( 7000000 ) ( 1 1 2 ) ( 1 1 5 ) ( 1 1 7 ) ( 1000000 ) ( 1 1 2 ) ( 1 1 5 ) \large = \dfrac{ (7000000) (1 - \dfrac{1}{2} ) (1 - \dfrac{1}{5} ) (1 - \dfrac{1}{7} )}{ (1000000) (1 - \dfrac{1}{2} )(1 - \dfrac{1}{5})}

After simplifying:

= ( 7 ) ( 1 1 7 ) = 7 × 6 7 = 6 \large = (7) (1 - \dfrac{1}{7}) = 7 \times \dfrac{6}{7} = \color{#3D99F6} \boxed{ 6 }

This is helpful! Thanks

Lisa Liu - 4 months, 3 weeks ago
. .
Mar 24, 2021

ϕ ( 7000000 ) ϕ ( 1000000 ) = ϕ ( 7 ) = 1 , 2 , 3 , 4 , 5 , 6 , 7 6 1 is a factor of every natural number. \displaystyle \frac { \phi ( 7000000 ) } { \phi ( 1000000 ) } = \phi ( 7 ) = 1, 2, 3, 4, 5, 6, \cancel { 7 } \Rightarrow \boxed { 6 } \text { 1 is a factor of every natural number. }

ϕ ( ) \large\phi\left (\cdot\right ) is multiplicative, so: ϕ ( 7000000 ) ϕ ( 1000000 ) = ϕ ( 7000000 1000000 ) = ϕ ( 7 ) = 7 ( 1 1 7 ) = 7 × 6 7 = 6 \large\begin{aligned} \cfrac{\phi\left (7000000\right )}{\phi\left (1000000\right )}&=\phi\left (\cfrac{7000000}{1000000}\right )\\ &=\phi\left (7\right )\\ &=7\left(1-\cfrac{1}{7}\right)\\ &=7\times\cfrac{6}{7}\\ &=6 \end{aligned}

Nice Solution.

Ïnërt Gäs - 6 months, 1 week ago

Copy paste

Mr. Krabs - 4 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...