A tough integral in disguise!

Calculus Level 4

1 2 x 2 + 2 x { x } { x } 2 x + { x } d x \large \int_{1}^{2} \dfrac{ \sqrt { \lfloor x \rfloor ^{2} + 2 \lfloor x \rfloor \lbrace x \rbrace - \lbrace x \rbrace^{2} } }{ \lfloor x \rfloor + \lbrace x \rbrace } dx

If the integral above equals to ( a b ) ( b + π a a ) (\sqrt{a} - b ) \left( b + \dfrac{ \pi}{ a\sqrt {a} } \right) , where a a and b b are coprime positive integers, find ln ( a × b ) \ln(a \times b) .

Notations :

  • \lfloor \cdot \rfloor denotes floor function .
  • { } \lbrace \cdot \rbrace denotes fractional part function .
  • ln ( ) \ln(\cdot) denotes logarithm to the base e e .


The answer is 0.693.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Santhosh Talluri
May 27, 2021

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...