A Trace of Maximum

Algebra Level 5

For any positive integer n n , the n × n n \times n matrix C ( n ) C(n) has components C ( n ) u , v = 1 m a x ( u , v ) 1 u , v n C(n)_{u,v} \; = \; \frac{1}{\mathrm{max}(u,v)} \hspace{2cm} 1 \le u,v \le n If we calculate the trace T r [ C ( n ) 1 ] \mathrm{Tr}[C(n)^{-1}] of the inverse matrix of C ( n ) C(n) , it can be shown that n = 2 1 T r [ C ( n ) 1 ] n = a b \sum_{n=2}^\infty \frac{1}{\mathrm{Tr}[C(n)^{-1}] - n} \; = \; \frac{a}{b} for some coprime positive integers a , b a,b . What is the value of a + b a + b ?

Inspiration


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 5, 2020

Note that the components in right-hand column and the bottom row of C ( n ) C(n) are all equal to n 1 n^{-1} . Then we have ( 0 C ( n ) 1 0 0 0 0 0 n ( n + 1 ) ( n + 1 ) 2 ) C ( n + 1 ) = ( 0 C ( n ) 1 0 0 0 0 0 n ( n + 1 ) ( n + 1 ) 2 ) ( 1 n + 1 C ( n ) 1 n + 1 1 n + 1 1 n + 1 1 n + 1 1 n + 1 1 n + 1 1 n + 1 ) = ( 0 I n 0 n n + 1 0 0 0 0 1 ) \begin{aligned} \left(\begin{array}{ccccc|c} & & & & & 0 \\ & & & & & \vdots \\ & & C(n)^{-1} & & & \vdots \\ & & & & & 0 \\ & & & & & 0 \\\hline 0 & 0 & \cdots & 0 & -n(n+1) & (n+1)^2 \end{array}\right)C(n+1) & = \; \left(\begin{array}{ccccc|c} & & & & & 0 \\ & & & & & \vdots \\ & & C(n)^{-1} & & & \vdots \\ & & & & & 0 \\ & & & & & 0 \\\hline 0 & 0 & \cdots & 0 & -n(n+1) & (n+1)^2 \end{array}\right) \left(\begin{array}{ccccc|c} & & & & & \frac{1}{n+1} \\ & & & & & \vdots \\ & & C(n) & & & \vdots \\ & & & & & \frac{1}{n+1} \\ & & & & & \frac{1}{n+1} \\\hline \frac{1}{n+1} & \frac{1}{n+1} & \cdots & \frac{1}{n+1} & \frac{1}{n+1} & \frac{1}{n+1} \end{array}\right) \\ & = \; \left(\begin{array}{ccccc|c} & & & & & 0 \\ & & & & & \vdots \\ & & I_n & & & \vdots \\ & & & & & 0 \\ & & & & & \frac{n}{n+1} \\\hline 0 & 0 & \cdots & 0 & 0 & 1 \end{array}\right) \end{aligned} so that C ( n + 1 ) 1 = ( 0 I n 0 n n + 1 0 0 0 1 ) ( 0 C ( n ) 1 0 0 0 0 0 n ( n + 1 ) ( n + 1 ) 2 ) = ( 0 C ( n ) 1 + n 2 J ( n ) 0 n ( n + 1 ) 0 0 0 n ( n + 1 ) ( n + 1 ) 2 ) \begin{aligned} C(n+1)^{-1} & = \; \left(\begin{array}{ccccc|c} & & & & & 0 \\ & & & & & \vdots \\ & & I_n & & & \vdots \\ & & & & & 0 \\ & & & & & -\frac{n}{n+1} \\\hline 0 & \cdots & \cdots & 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccccc|c} & & & & & 0 \\ & & & & & \vdots \\ & & C(n)^{-1} & & & \vdots \\ & & & & & 0 \\ & & & & & 0 \\\hline 0 & 0 & \cdots & 0 & -n(n+1) & (n+1)^2 \end{array}\right) \\ & = \; \left(\begin{array}{ccccc|c} & & & & & 0 \\ & & & & & \vdots \\ & & C(n)^{-1} + n^2J(n) & & & \vdots \\ & & & & & 0 \\ & & & & & -n(n+1) \\\hline 0 & 0 & \cdots & 0 & -n(n+1) & (n+1)^2 \end{array}\right) \end{aligned} where J ( n ) J(n) is the n × n n \times n matrix with 1 1 in the bottom-right corner, and 0 0 everywhere else. Thus T r [ C ( n + 1 ) 1 ] = T r [ C ( n ) 1 + n 2 J ( n ) ] + ( n + 1 ) 2 = T r [ C ( n ) 1 ] + n 2 + ( n + 1 ) 2 \mathrm{Tr}[C(n+1)^{-1}] \; = \; \mathrm{Tr}[C(n)^{-1} + n^2J(n)] + (n+1)^2 \; = \; \mathrm{Tr}[C(n)^{-1}] + n^2 + (n+1)^2 and hence T r [ C ( n ) 1 ] = r = 1 n r 2 + r = 1 n 1 r 2 = 1 3 n ( 2 n 2 + 1 ) n 1 \mathrm{Tr}[C(n)^{-1}] = \sum_{r=1}^n r^2 + \sum_{r=1}^{n-1}r^2 = \tfrac13n(2n^2+1) \hspace{2cm} n \ge 1 Finally, then, n = 2 1 T r [ C ( n ) 1 ] n = n = 2 3 2 ( n 1 ) n ( n + 1 ) = 3 4 n = 2 ( 1 ( n 1 ) n 1 n ( n + 1 ) ) = 3 8 \sum_{n=2}^\infty \frac{1}{\mathrm{Tr}[C(n)^{-1}] - n} \; = \; \sum_{n=2}^\infty \frac{3}{2(n-1)n(n+1)} \; = \frac34\sum_{n=2}^\infty\left(\frac{1}{(n-1)n} - \frac{1}{n(n+1)}\right) \; = \; \frac38 making the answer 3 + 8 = 11 3 + 8 = \boxed{11} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...