A Treatise on The Integral Calculus

Calculus Level 5

Find the exact numerical value of

0 4 ln ( x ) 4 x x 2 d x \large \int _0^4 \frac {\ln (x)}{\sqrt{4x- x^2}} dx


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 4 l n ( x ) 4 x x 2 d x = 0 4 l n ( x ) 4 ( x 2 ) 2 d x I = \int_0^4 \frac{ln(x)}{\sqrt{4x-x^2}} dx = \int_0^4 \frac{ln(x)}{\sqrt{4 - (x - 2)^2}} dx

Substitute x 2 = 2 c o s θ x - 2 = 2cos\theta

I = 0 π l n ( 2 + 2 c o s θ ) d θ = 0 π l n ( 2 + 2 c o s ( π θ ) ) d θ = 0 π l n ( 2 2 c o s θ ) d θ I = \int_0^{\pi} ln(2+2cos\theta) d\theta = \int_0^{\pi} ln(2+2cos(\pi-\theta)) d\theta = \int_0^{\pi} ln(2-2cos\theta) d\theta

Adding first and last terms in the above equivalence,

2 I = 0 π l n ( 4 4 c o s 2 θ ) d θ = 0 π l n ( 4 s i n 2 θ ) d θ = 2 0 π l n ( 2 s i n θ ) d θ 2I = \int_0^{\pi} ln(4-4cos^2\theta) d\theta = \int_0^{\pi} ln(4sin^2\theta) d\theta = 2\int_0^{\pi} ln(2sin\theta) d\theta

I = 0 π l n ( 2 s i n θ ) d θ = 2 0 π / 2 l n ( 2 s i n θ ) d θ = π l n 2 + 2 0 π / 2 l n ( s i n θ ) d θ \Rightarrow I = \int_0^{\pi} ln(2sin\theta) d\theta = 2\int_0^{\pi/2} ln(2sin\theta) d\theta = \pi ln2 + 2\int_0^{\pi/2}ln(sin\theta) d\theta Call this equation A A

Let I 1 = 0 π / 2 l n ( s i n θ ) d θ I_1 = \int_0^{\pi/2}ln(sin\theta) d\theta

I 1 = 0 π / 2 l n ( c o s θ ) d θ I_1 = \int_0^{\pi/2}ln(cos\theta) d\theta

Adding the above two equations,

2 I 1 = 0 π / 2 l n ( s i n θ c o s θ ) d θ = 0 π / 2 l n ( s i n 2 θ 2 ) d θ 2I_1 = \int_0^{\pi/2}ln(sin\theta cos\theta) d\theta = \int_0^{\pi/2}ln(\frac{sin2\theta}{2}) d\theta

2 I 1 = 0 π / 2 l n ( s i n 2 θ ) d θ π 2 l n ( 2 ) 2I_1 = \int_0^{\pi/2}ln(sin2\theta) d\theta - \frac{\pi}{2}ln(2) Call this equation B B

For the integral term on the right, substitute 2 θ = α 2\theta = \alpha

0 π / 2 l n ( s i n 2 θ ) d θ = 1 2 0 π l n ( s i n α ) d α = 2 2 0 π / 2 l n ( s i n α ) d α \int_0^{\pi/2}ln(sin2\theta) d\theta = \frac{1}{2}\int_0^{\pi}ln(sin \alpha) d\alpha = \frac{2}{2}\int_0^{\pi/2}ln(sin\alpha)d\alpha which is same as I 1 I_1

Using the above result in equation B B , we get

2 I 1 = I 1 π 2 l n ( 2 ) I 1 = π 2 l n ( 2 ) 2I_1 = I_1 - \frac{\pi}{2}ln(2) \Rightarrow I_1 = -\frac{\pi}{2}ln(2)

Using the above result in equation A A , we get

I = π l n 2 + 2 ( π 2 l n ( 2 ) ) = 0 I = \pi ln2 + 2\left( -\frac{\pi}{2}ln(2)\right) = 0

Some identities used in the above solution:

0 a f ( x ) d x = 0 a f ( a x ) d x \int_0^{a} f(x)dx = \int_0^a f(a-x)dx

0 2 a f ( x ) d x = 2 0 a f ( x ) d x \int_0^{2a} f(x)dx = 2\int_0^a f(x)dx if f ( x ) = f ( 2 a x ) f(x) = f(2a - x)

Aareyan Manzoor
Sep 8, 2017

S = 0 4 ln ( x ) 4 x x 2 = 0 4 ln ( 4 x ) 4 x x 2 2 S = 0 4 ln ( 4 x x 2 ) 4 x x 2 S= \int_0^4 \dfrac{\ln(x)}{\sqrt{4x-x^2}}=\int_0^4 \dfrac{\ln(4-x)}{\sqrt{4x-x^2}} \to 2S=\int_0^4 \dfrac{\ln(4x-x^2)}{\sqrt{4x-x^2}} let I ( a ) = 0 4 ( 4 x x 2 ) a d x = 4 0 1 1 6 a x a ( 1 x ) a d x = 4 1 6 a β ( a + 1 , a + 1 ) I(a)=\int_0^4 (4x-x^2)^a dx=4\int_0^1 16^a x^a(1-x)^a dx= 4*16^a \beta(a+1,a+1) then I ( a ) = 4 ln ( 16 ) 1 6 a β ( a + 1 , a + 1 ) + 8 1 6 a β ( a + 1 , a + 1 ) ( ψ ( a + 1 ) ψ ( 2 a + 2 ) ) I'(a)= 4\ln(16)16^a \beta(a+1,a+1)+8*16^a \beta(a+1,a+1)(\psi(a+1)-\psi(2a+2)) putting a=-1/2 we have 2 S = I ( 1 / 2 ) = ln ( 16 ) π + 2 π ( γ 2 ln ( 2 ) + γ ) = 0 S = 0 2S=I'(-1/2)=\ln(16)\pi +2\pi(-\gamma-2\ln(2)+\gamma)=0\to S=\boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...