Find the exact numerical value of
∫ 0 4 4 x − x 2 ln ( x ) d x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S = ∫ 0 4 4 x − x 2 ln ( x ) = ∫ 0 4 4 x − x 2 ln ( 4 − x ) → 2 S = ∫ 0 4 4 x − x 2 ln ( 4 x − x 2 ) let I ( a ) = ∫ 0 4 ( 4 x − x 2 ) a d x = 4 ∫ 0 1 1 6 a x a ( 1 − x ) a d x = 4 ∗ 1 6 a β ( a + 1 , a + 1 ) then I ′ ( a ) = 4 ln ( 1 6 ) 1 6 a β ( a + 1 , a + 1 ) + 8 ∗ 1 6 a β ( a + 1 , a + 1 ) ( ψ ( a + 1 ) − ψ ( 2 a + 2 ) ) putting a=-1/2 we have 2 S = I ′ ( − 1 / 2 ) = ln ( 1 6 ) π + 2 π ( − γ − 2 ln ( 2 ) + γ ) = 0 → S = 0
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 4 4 x − x 2 l n ( x ) d x = ∫ 0 4 4 − ( x − 2 ) 2 l n ( x ) d x
Substitute x − 2 = 2 c o s θ
I = ∫ 0 π l n ( 2 + 2 c o s θ ) d θ = ∫ 0 π l n ( 2 + 2 c o s ( π − θ ) ) d θ = ∫ 0 π l n ( 2 − 2 c o s θ ) d θ
Adding first and last terms in the above equivalence,
2 I = ∫ 0 π l n ( 4 − 4 c o s 2 θ ) d θ = ∫ 0 π l n ( 4 s i n 2 θ ) d θ = 2 ∫ 0 π l n ( 2 s i n θ ) d θ
⇒ I = ∫ 0 π l n ( 2 s i n θ ) d θ = 2 ∫ 0 π / 2 l n ( 2 s i n θ ) d θ = π l n 2 + 2 ∫ 0 π / 2 l n ( s i n θ ) d θ Call this equation A
Let I 1 = ∫ 0 π / 2 l n ( s i n θ ) d θ
I 1 = ∫ 0 π / 2 l n ( c o s θ ) d θ
Adding the above two equations,
2 I 1 = ∫ 0 π / 2 l n ( s i n θ c o s θ ) d θ = ∫ 0 π / 2 l n ( 2 s i n 2 θ ) d θ
2 I 1 = ∫ 0 π / 2 l n ( s i n 2 θ ) d θ − 2 π l n ( 2 ) Call this equation B
For the integral term on the right, substitute 2 θ = α
∫ 0 π / 2 l n ( s i n 2 θ ) d θ = 2 1 ∫ 0 π l n ( s i n α ) d α = 2 2 ∫ 0 π / 2 l n ( s i n α ) d α which is same as I 1
Using the above result in equation B , we get
2 I 1 = I 1 − 2 π l n ( 2 ) ⇒ I 1 = − 2 π l n ( 2 )
Using the above result in equation A , we get
I = π l n 2 + 2 ( − 2 π l n ( 2 ) ) = 0
Some identities used in the above solution:
∫ 0 a f ( x ) d x = ∫ 0 a f ( a − x ) d x
∫ 0 2 a f ( x ) d x = 2 ∫ 0 a f ( x ) d x if f ( x ) = f ( 2 a − x )