A triangle polynomial

Algebra Level 5

p ( x ) p(x) is a polynomial of degree 2014 with with real coefficients such p ( x ) = ( 1 ) x p(x) = (-1)^x for x = 0 , 1 , , 2014 x=0,1,\ldots,2014 .

Find the last 4 digits of p ( 2015 ) p(2015) .


The answer is 2767.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alex Letizia
May 19, 2016

Built p ( x ) p(x) with polynomial Lagrange:

p ( x ) = ( x 1 ) ( x 2 ) ( x 2014 ) 2014 ! 0 ! + x ( x 2 ) ( x 2014 ) 2013 ! 1 ! + + + x ( x 1 ) ( x 2012 ) ( x 2014 ) 1 ! 2013 ! + x ( x 1 ) ( x 2013 ) 0 ! 2014 ! \begin{aligned} p(x)=&\frac{(x-1)(x-2)\dots(x-2014)}{2014!\cdot0!}+\frac{x(x-2)\dots(x-2014)}{2013!\cdot1!}+\dots+ \\ &+\frac{x(x-1)\dots(x-2012)(x-2014)}{1!\cdot2013!}+\frac{x(x-1)\dots(x-2013)}{0!\cdot2014!} \end{aligned}

where the l' i i- th term is built such as p ( i ) = ( 1 ) i p(i)=(-1)^i i 0 , 1 , , 2014 \forall i\in{0,1,\dots,2014} (substituted).

So evaluate p ( 2015 ) p(2015) :

\begin{equation*} p(2015)=1+\frac{2015!}{2014!\cdot1!}+\frac{2015!}{2013!\cdot2!}+\dots+\frac{2015!}{2!\cdot2013!}+\frac{2015!}{1!\cdot2014!}. \end{equation*}

Follows that p ( 2015 ) p(2015) can be rewritten:

\begin{equation*} p(2015)=\binom{2015}{0}+\binom{2015}{1}+\dots+\binom{2015}{2013}+\binom{2015}{2014}=2^{2015}-1. \end{equation*}

Now you just have to find the last 4 4 digits of 2 2015 1 2^{2015}-1 but: \begin{equation*} 2^{2015}\equiv{2^{15}}\pmod{625} \text{ because } \phi(625)=500 \end{equation*} so \begin{equation*} 2^{2015}\equiv{268}\pmod{625}. \end{equation*} Consequently the last 4 4 digits of 2 2015 2^{2015} can be 268 + 625 k 268+625k but it is true that the last 4 4 digits of a power of 2 2 must be divisible at least by 2 4 2^4 and this is true only if k = 4 k=4 ;

2 2015 1 2767 ( m o d 10000 ) . 2^{2015}-1\equiv{\fbox{2767}}\pmod{10000}.

Sal Gard
May 20, 2016

Using method of differences, we get the array

1 -1 1 -1 1 -1........ -1 1 -2 2 -2 2 -2 ......... 2 4 -4 4 -4 .........4 -8 8 -8 8.......8 ................. 2^2014. Because of the polynomial degrees, this 2^2014 must remain constant. Hence f(2015)=22^2014+2^2013.....+2+1=2^2015-1. Taking mod 10000 we get 2767.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...