is a polynomial of degree 2014 with with real coefficients such for .
Find the last 4 digits of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Built p ( x ) with polynomial Lagrange:
p ( x ) = 2 0 1 4 ! ⋅ 0 ! ( x − 1 ) ( x − 2 ) … ( x − 2 0 1 4 ) + 2 0 1 3 ! ⋅ 1 ! x ( x − 2 ) … ( x − 2 0 1 4 ) + ⋯ + + 1 ! ⋅ 2 0 1 3 ! x ( x − 1 ) … ( x − 2 0 1 2 ) ( x − 2 0 1 4 ) + 0 ! ⋅ 2 0 1 4 ! x ( x − 1 ) … ( x − 2 0 1 3 )
where the l' i − th term is built such as p ( i ) = ( − 1 ) i ∀ i ∈ 0 , 1 , … , 2 0 1 4 (substituted).
So evaluate p ( 2 0 1 5 ) :
\begin{equation*} p(2015)=1+\frac{2015!}{2014!\cdot1!}+\frac{2015!}{2013!\cdot2!}+\dots+\frac{2015!}{2!\cdot2013!}+\frac{2015!}{1!\cdot2014!}. \end{equation*}
Follows that p ( 2 0 1 5 ) can be rewritten:
\begin{equation*} p(2015)=\binom{2015}{0}+\binom{2015}{1}+\dots+\binom{2015}{2013}+\binom{2015}{2014}=2^{2015}-1. \end{equation*}
Now you just have to find the last 4 digits of 2 2 0 1 5 − 1 but: \begin{equation*} 2^{2015}\equiv{2^{15}}\pmod{625} \text{ because } \phi(625)=500 \end{equation*} so \begin{equation*} 2^{2015}\equiv{268}\pmod{625}. \end{equation*} Consequently the last 4 digits of 2 2 0 1 5 can be 2 6 8 + 6 2 5 k but it is true that the last 4 digits of a power of 2 must be divisible at least by 2 4 and this is true only if k = 4 ;
2 2 0 1 5 − 1 ≡ 2 7 6 7 ( m o d 1 0 0 0 0 ) .