A tribute of Ameya Daigavane

Classical Mechanics Level pending

Block A A of mass m m is performing SHM of amplitude a a . Another block B B of mass m m is gently placed on A when it is at a 2 \frac { a }{ 2 } from mean position and B B sticks to A A . Find amplitude of new SHM.

Details Given a = 1 a=1

More questions??


The answer is 0.79.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandhu Raj
Mar 26, 2016

Kinetic energies at a 2 \frac { a }{ 2 }

For mass m : 1 2 m u 2 = 1 2 m ω 2 [ a 2 ( a 2 ) 2 ] m:\frac { 1 }{ 2 } m{ u }^{ 2 }=\frac { 1 }{ 2 } m{ \omega }^{ 2 }\left[ { a }^{ 2 }-{ \left( \frac { a }{ 2 } \right) }^{ 2 } \right] ---- 1 \boxed{1} For mass 2 m : 1 2 2 m v 2 = 1 2 2 m ( ω 2 ) 2 [ A 2 ( a 2 ) 2 ] 2m:\frac { 1 }{ 2 } 2m{ v }^{ 2 }=\frac { 1 }{ 2 } 2m\left( \frac { \omega }{ \sqrt { 2 } } \right) ^{ 2 }\left[ { A }^{ 2 }-{ \left( \frac { a }{ 2 } \right) }^{ 2 } \right]

By conservation of momentum, v = u 2 v=\frac { u }{ 2 }

1 2 2 m ( u 2 ) 2 = 1 2 2 m ( ω 2 ) 2 [ A 2 ( a 2 ) 2 ] \therefore\frac { 1 }{ 2 } 2m{ \left( \frac { u }{ 2 } \right) }^{ 2 }=\frac { 1 }{ 2 } 2m\left( \frac { \omega }{ \sqrt { 2 } } \right) ^{ 2 }\left[ { A }^{ 2 }-{ \left( \frac { a }{ 2 } \right) }^{ 2 } \right] ---- 2 \boxed{2}

Dividing 1 \boxed{1} by 2 \boxed{2}

2 = a 2 ( a 2 ) 2 A 2 ( a 2 ) 2 2=\frac { { a }^{ 2 }-{ \left( \frac { a }{ 2 } \right) }^{ 2 } }{ { A }^{ 2 }-{ \left( \frac { a }{ 2 } \right) }^{ 2 } }

Solving gives A = a 5 8 A=a\sqrt { \frac { 5 }{ 8 } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...