A tribute to my 100 100 followers

Calculus Level 2

Solve lim k 100 k 100 + 100 k ( 100 100 + 100 × 100 ) k 100 \lim _{ k\rightarrow 100 }{ \frac { { k }^{ 100 } + 100k - ({ 100 }^{ 100 }+100\times 100) }{ k - 100 } }

\infty 0 0 100 100 { 100 }^{ 100 } -\infty 100 99 { 100 }^{ 99 } 100 99 + 100 { 100 }^{ 99 } + 100 Indeterminate 100 ( 10 99 + 10 0 ) 100 ({ 10 }^{ 99 } + { 10 }^{ 0 })

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tijmen Veltman
May 29, 2015

Substitute k = x + 100 k=x+100 :

lim x 0 ( x + 100 ) 100 + 100 ( x + 100 ) ( 10 0 100 + 100 × 100 ) x \lim_{x\to 0} \frac{(x+100)^{100}+100(x+100)-(100^{100}+100\times 100)}{x}

= lim x 0 O ( x 2 ) + 100 × 10 0 99 x + 10 0 100 + 100 x + 10 0 2 10 0 100 10 0 2 x =\lim_{x\to 0} \frac{\mathcal{O}(x^2)+100\times 100^{99}x+100^{100}+100x+100^2-100^{100}-100^2}{x}

= lim x 0 100 × 10 0 99 + 100 + O ( x ) =\lim_{x\to 0} 100\times 100^{99}+100+\mathcal{O}(x)

= 100 ( 1 0 99 + 1 0 0 ) =\boxed{100(10^{99}+10^0)} .

The big O notation O ( x k ) \mathcal{O}(x^k) in this case stands for any polynomial terms of order k k or higher.

it is 100^99

not 10^99

all options are wrong

Anand O R - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...