A tricky area

Calculus Level 5

Let a a be a positive constant such that the area enclosed by the curve x 2 / 5 + y 2 / 5 = a 2 / 5 x^{2/5} + y^{2/5} = a^{2/5} can be written as A B π a 2 \dfrac AB \pi a^2 , where A A and B B are coprime positive integers .

Find the sum of digits of A + B A+B .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We can parametrize the curve as follows: { r ( θ ) = a cos 5 θ i ^ + a sin 5 θ j ^ 0 θ 2 π \begin{cases} \vec{r}(\theta) = a\cos^5 \theta\hat{i}+a\sin^5 \theta\hat{j}\\ 0 \leq \theta \leq 2\pi \end{cases} Now, let's use Green's theorem to find the area enclosed by the curve: A = 1 2 C x d y y d x = 1 2 0 2 π ( ( a cos 5 θ ) ( 5 a sin 4 θ cos θ d θ ) ( a sin 5 θ ) ( 5 a sin θ cos 4 θ d θ ) ) = 5 a 2 2 0 2 π ( sin 4 θ cos 6 θ + sin 6 θ cos 4 θ ) d θ = 5 a 2 2 0 2 π sin 4 θ cos 4 θ ( sin 2 θ + cos 2 θ ) d θ = 5 a 2 2 0 2 π ( sin 2 θ 2 ) 4 d θ = 5 a 2 32 0 2 π sin 4 2 θ d θ = 5 a 2 32 0 2 π ( 1 8 cos 8 θ 1 2 cos 4 θ + 3 8 ) d θ = 5 a 2 32 ( 1 64 sin 8 θ 1 8 sin 4 θ + 3 8 θ ) 0 2 π = 15 128 π a 2 \begin{aligned} A &= \dfrac{1}{2} \oint_C x\mathrm{d}y-y\mathrm{d}x\\ &= \dfrac{1}{2} \int_{0}^{2\pi} \left(\left(a\cos^5 \theta\right)\left(5a\sin^4 \theta \cos \theta \mathrm{d}\theta\right)-\left(a\sin^5 \theta\right)\left(-5a\sin \theta \cos^4 \theta \mathrm{d}\theta\right)\right)\\ &= \dfrac{5a^2}{2} \int_{0}^{2\pi} \left(\sin^4 \theta \cos^6 \theta + \sin^6 \theta \cos^4 \theta\right) \mathrm{d}\theta\\ &= \dfrac{5a^2}{2} \int_{0}^{2\pi} \sin^4 \theta \cos^4 \theta \left(\sin^2 \theta + \cos^2 \theta\right) \mathrm{d}\theta\\ &= \dfrac{5a^2}{2} \int_{0}^{2\pi} \left(\dfrac{\sin 2\theta}{2}\right)^4 \mathrm{d}\theta\\ &= \dfrac{5a^2}{32} \int_{0}^{2\pi} \sin^4 2\theta \mathrm{d}\theta\\ &= \dfrac{5a^2}{32} \int_{0}^{2\pi} \left(\dfrac{1}{8}\cos 8\theta-\dfrac{1}{2}\cos 4\theta+\dfrac{3}{8}\right) \mathrm{d}\theta\\ &= \dfrac{5a^2}{32} \left(\dfrac{1}{64}\sin 8\theta-\dfrac{1}{8}\sin 4\theta+\dfrac{3}{8}\theta\right) \Big|_{0}^{2\pi}\\ &= \dfrac{15}{128} \pi a^2 \end{aligned} Finally, A + B = 15 + 128 = 143 A+B=15+128=143 , so the answer is 8 \boxed{8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...