A "trick"y Integral

Calculus Level 4

x 4 d x 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! \large \int{\frac{x^4 \ dx}{1+x+\frac{x^2}{2!}+ \frac {x^3}{3!} + \frac{x^4}{4!}}}

Sometimes making a tricky substitution will make a problem a lot easier to integrate. Try evaluating the antiderivative above.

24 x ln ( x 4 + 4 x 3 + 12 x 2 + 24 x + 24 ) + C 24x - \ln(x^4 + 4x^3 + 12x^2 + 24x + 24) + C ln ( x 4 + 4 x 3 + 12 x 2 + 24 x + 24 ) + C - \ln(x^4 + 4x 3 + 12x^2 + 24x + 24) + C x ln ( x 4 + 4 x 3 + 12 x 2 + 24 x + 24 ) + C x - \ln(x^4 + 4x^3 + 12x^2 + 24x + 24) + C x 24 ln ( x 4 + 4 x 3 + 12 x 2 + 24 x + 24 ) + C x - 24 \ln(x^4 + 4x^3 + 12x^2 + 24x + 24) + C 24 ln ( x 4 + 4 x 3 + 12 x 2 + 24 x + 24 ) + C -24 \ln(x^4 + 4x^3 + 12x^2 + 24x + 24) + C 24 x 24 ln ( x 4 + 4 x 3 + 12 x 2 + 24 x + 24 ) + C 24x - 24 \ln(x^4 + 4x^3 + 12x^2 + 24x + 24) + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Parth Sankhe
Nov 6, 2018

Put 1 + x + x 2 2 ! . . . x 4 4 ! = t 1+x+\frac {x^2}{2!}...\frac {x^4}{4!}=t

Hence, d t = ( 1 + x + x 2 2 ! + x 3 3 ! ) d x dt= (1+x+\frac {x^2}{2!} +\frac {x^3}{3!})dx

Thus, t d x d t = x 4 4 ! d x tdx-dt=\frac {x^4}{4!}dx

Putting that in the integral,

24 ( t d x d t ) t \Rightarrow \int \frac {24(tdx-dt)}{t}

= 24 d x + 24 d t t =24\int {dx}+ 24\int \frac {dt}{t}

Put t t in terms of x x and integrate, and we have the answer.

Original integral: x 4 d x 1 + x + x 2 2 ! + . . . + x 4 4 ! \int{\frac{x^4 dx}{1+x+\frac{x^2}{2!}+ . . . + \frac{x^4}{4!}}} .
Factoring out a 24 gives: 24 x 4 d x x 4 + 4 x 3 + 12 x 2 + 24 x + 24 24\int{\frac{x^4 dx}{x^4+4x^3+12x^2+24x+24}} .
Performing long division gives: 1 4 x 3 + 12 x 2 + 24 x + 24 x 4 + 4 x 3 + 12 x 2 + 24 x + 24 d x \int{1-\frac{4x^3+12x^2+24x+24}{x^4+4x^3+12x^2+24x+24} dx} .
Separate the integrals: 1 d x 4 x 3 + 12 x 2 + 24 x + 24 x 4 + 4 x 3 + 12 x 2 + 24 x + 24 d x \int{1 dx} - \int{\frac{4x^3+12x^2+24x+24}{x^4+4x^3+12x^2+24x+24} dx} .
Use U-Substitution where u is the denominator, and du is the numerator: 1 d x d u u \int{1 dx} - \int{\frac{du}{u}} .
Integrate: x l n u + C x - ln|u| + C .
Plug in u and bring back the original factor of 24: 24 x 24 l n ( x 4 + 4 x 3 + 12 x 2 + 24 x + 24 ) + C 24x-24ln(x^4+4x^3+12x^2+24x+24) + C .


I = x 4 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! d x Multiply up and down by 4 ! = 24 x 4 24 + 24 x + 12 x 2 + 4 x 3 + x 4 d x = ( 24 24 ( 24 + 24 x + 12 x 2 + 4 x 3 ) 24 + 24 x + 12 x 2 + 4 x 3 + x 4 ) d x = 24 x 24 ln ( x 4 + 4 x 3 + 12 x 2 + 24 x + 24 ) + C \begin{aligned} I & = \int \frac {x^4}{1+x+\frac {x^2}{2!}+\frac {x^3}{3!}+\frac {x^4}{4!}} \ dx & \small \color{#3D99F6} \text{Multiply up and down by }4! \\ & = \int \frac {24x^4}{24+24x+12x^2+4x^3+x^4} \ dx \\ & = \int \left(24 - \frac {24(24+24x+12x^2+4x^3)}{24+24x+12x^2+4x^3+x^4} \right) dx \\ & = \boxed{24x - 24 \ln (x^4+4x^3+12x^2+24x+24) + C} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...