A tricky problem by Bs fire

1 0 93 1 0 31 + 3 \left \lfloor \frac {10^{93}}{10^{31}+3} \right \rfloor

Find the last two digits of the number above.

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 16, 2020

Let a = 1 0 31 a=10^{31} and

N = 1 0 93 1 0 31 + 3 = a 3 a + 3 = ( a + 3 ) 3 9 a 2 27 a 27 a + 3 = ( a + 3 ) 3 9 ( a + 3 ) 2 + 27 ( a + 3 ) 27 a + 3 = ( a + 3 ) 2 9 ( a + 3 ) + 27 27 a + 3 = ( a + 3 ) 2 9 ( a + 3 ) + 26 = a 2 3 a + 8 \begin{aligned} N & = \left \lfloor \frac {10^{93}}{10^{31}+3} \right \rfloor = \left \lfloor \frac {a^3}{a+3} \right \rfloor \\ & = \left \lfloor \frac {(a+3)^3 - 9a^2 - 27a - 27}{a+3} \right \rfloor \\ & = \left \lfloor \frac {(a+3)^3 - 9(a+3)^2 + 27(a+3) - 27}{a+3} \right \rfloor \\ & = \left \lfloor (a+3)^2 - 9(a+3) +27 - \frac {27}{a+3} \right \rfloor \\ & = (a+3)^2 - 9(a+3) +26 \\ & = a^2 - 3a + 8 \end{aligned}

Then N a 2 3 a + 8 8 (mod 100) N \equiv a^2 - 3a + 8 \equiv \boxed 8 \text{ (mod 100)} .

James Moors
Mar 15, 2020
  • To start with, I’m going to note that one can expand a b + c \dfrac{a}{b+c} to a b c a b b + c \dfrac{a}{b}-c\dfrac{\frac{a}{b}}{b+c} . This may not seem all that useful but it’s super helpful for approximating stuff.
  • Next, if we want the last two digits of the number, we’re going to have to consider ( m o d 100 ) \pmod {100} and thus we can nix any multiples of 100 100 .
  • Lastly, GIF or [▪] is the floor function, so we’ll be rounding down at the end.

So, with that in mind:

[ 1 0 93 1 0 31 + 3 ] = [ 1 0 93 1 0 31 3 1 0 93 1 0 31 1 0 31 + 3 ] = [ 1 0 62 3 1 0 62 1 0 31 + 3 ] = [ 3 1 0 62 1 0 31 + 3 ] ( m o d 100 ) \begin{aligned} \left[\dfrac{10^{93}}{10^{31}+3}\right] & = \left[\dfrac{10^{93}}{10^{31}} - 3\dfrac{\frac{10^{93}}{10^{31}}}{10^{31}+3}\right] \\ & = \left[10^{62} - 3\dfrac{10^{62}}{10^{31}+3}\right] \\ & = \left[- 3\dfrac{10^{62}}{10^{31}+3}\right] \pmod{100} \end{aligned}

This is basically in the same form as the original fraction, so we can do it again:

[ 3 1 0 62 1 0 31 + 3 ] = [ 3 1 0 62 1 0 31 + 9 1 0 62 1 0 31 1 0 31 + 3 ] = [ 3 × 1 0 31 + 9 1 0 31 1 0 31 + 3 ] = [ 9 1 0 31 1 0 31 + 3 ] ( m o d 100 ) \begin{aligned} \left[-3 \dfrac{10^{62}}{10^{31}+3}\right] & = \left[-3 \dfrac{10^{62}}{10^{31}} + 9\dfrac{\frac{10^{62}}{10^{31}}}{10^{31}+3}\right] \\ & = \left[-3 \times 10^{31} + 9\dfrac{10^{31}}{10^{31}+3}\right] \\ & = \left[9\dfrac{10^{31}}{10^{31}+3}\right] \pmod{100} \end{aligned}

Here we note that 1 0 31 1 0 31 + 3 \dfrac{10^{31}}{10^{31}+3} is ever so slightly less than 1 1 , from which 9 1 0 31 1 0 31 + 3 9\dfrac{10^{31}}{10^{31}+3} is ever so slightly less than 9 9 and thus rounds down to 8 \fbox{8} .

Very wonderfull

Bsfire Toy - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...