A tricky summation

Calculus Level 5

Sum the series m = 1 n = 1 m 2 n 3 m ( n 3 m + m 3 n ) \sum_{m=1}^\infty\sum_{n=1}^\infty \frac{m^2n}{3^m(n3^m+m3^n)}


The answer is 0.28125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 31, 2018

Similar solution with @Guilherme Niedu 's.

S = m = 1 n = 1 m 2 n 3 m ( 3 m n + 3 n m ) Add another S interchanging m and n . = 1 2 ( m = 1 n = 1 m 2 n 3 m ( 3 m n + 3 n m ) + m = 1 n = 1 m n 2 3 n ( 3 n m + 3 m n ) ) = 1 2 ( m = 1 n = 1 3 n m 2 n + 3 m m n 2 3 m + n ( 3 m n + 3 n m ) ) = 1 2 ( m = 1 n = 1 m n ( 3 n m + 3 m n ) 3 m + n ( 3 m n + 3 n m ) ) = 1 2 ( m = 1 n = 1 m n 3 m + n ) = 1 2 ( m = 1 m 3 m n = 1 n 3 n ) See note: n = 1 n 3 n = 3 4 = 1 2 × 3 4 × 3 4 = 9 32 = 0.28125 \begin{aligned} S & = \sum_{m=1}^\infty \sum_{n=1}^\infty \frac {m^2n}{3^m(3^mn+3^nm)} & \small \color{#3D99F6} \text{Add another }S \text{ interchanging }m \text{ and }n. \\ & = \frac 12 \left(\sum_{m=1}^\infty \sum_{n=1}^\infty \frac {m^2n}{3^m(3^mn+3^nm)} + \sum_{m=1}^\infty \sum_{n=1}^\infty \frac {mn^2}{3^n(3^nm+3^mn)} \right) \\ & = \frac 12 \left(\sum_{m=1}^\infty \sum_{n=1}^\infty \frac {3^nm^2n+3^m mn^2}{3^{m+n}(3^mn+3^nm)} \right) \\ & = \frac 12 \left(\sum_{m=1}^\infty \sum_{n=1}^\infty \frac {mn\left(3^nm+3^mn\right)}{3^{m+n}(3^mn+3^nm)} \right) \\ & = \frac 12 \left(\sum_{m=1}^\infty \sum_{n=1}^\infty \frac {mn}{3^{m+n}} \right) \\ & = \frac 12 \left(\sum_{m=1}^\infty \frac m{3^m} \sum_{n=1}^\infty \frac n{3^n} \right) & \small \color{#3D99F6} \text{See note: }\sum_{n=1}^\infty \frac n{3^n} = \frac 34 \\ & = \frac 12 \times \frac 34 \times \frac 34 = \frac 9{32} = \boxed{0.28125} \end{aligned}


Note:

S n = n = 1 n 3 n = n = 0 n 3 n = n = 0 n + 1 3 n + 1 = 1 3 n = 0 n 3 n + 1 3 n = 0 1 3 n = 1 3 S n + 1 2 = 3 4 \begin{aligned} S_n & = \sum_{\color{#3D99F6}n=1}^\infty \frac n{3^n} = \sum_{\color{#D61F06}n=0}^\infty \frac n{3^n} = \sum_{\color{#D61F06}n=0}^\infty \frac {n+1}{3^{n+1}} = \frac 13 {\color{#3D99F6}\sum_{n=0}^\infty \frac n{3^n}} + \frac 13 \sum_{n=0}^\infty \frac 1{3^n} = \frac 13 {\color{#3D99F6}S_n} + \frac 12 = \frac 34 \end{aligned}

Same solution, my friend!

Guilherme Niedu - 2 years, 10 months ago

Log in to reply

Sorry, I didn't notice.

Chew-Seong Cheong - 2 years, 10 months ago

Log in to reply

No problem! Just pointing out that we are thinking the same!

Guilherme Niedu - 2 years, 10 months ago
Guilherme Niedu
Jul 28, 2018

First of all, let us consider the sum:

n = 1 x n = x 1 x , x < 1 \large \displaystyle \sum_{n=1}^{\infty} x^n = \frac{x}{1-x}, |x| < 1

Differentiating with respect to x x and then multiplying by x x on both sides:

n = 1 n x n = x ( 1 x ) 2 , x < 1 \color{#20A900} \boxed{\large \displaystyle \sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x) ^2}, |x| < 1}

Now, to the main sum:

S = m = 1 n = 1 m 2 n 3 m ( n 3 m + m 3 n ) \large \displaystyle S = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n} {3^m (n3^m + m3^n)}

S = 1 2 [ m = 1 n = 1 m 2 n 3 m ( n 3 m + m 3 n ) + n 2 m 3 n ( m 3 n + n 3 m ) ] \large \displaystyle S = \frac12 \left [ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n} {3^m (n3^m + m3^n)} + \frac{n^2 m} {3^n (m3^n + n3^m)} \right]

S = 1 2 [ m = 1 n = 1 3 n m 2 n + 3 m n 2 m 3 m + n ( n 3 m + m 3 n ) ] \large \displaystyle S = \frac12 \left [ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{3^n m^2 n + 3^m n^2 m} {3^{m+n} (n3^m + m3^n)} \right]

S = 1 2 [ m = 1 n = 1 m n ( n 3 m + m 3 n ) 3 m + n ( n 3 m + m 3 n ) ] \large \displaystyle S = \frac12 \left [ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{mn(n3^m + m3^n) } {3^{m+n} (n3^m + m3^n)} \right]

S = 1 2 [ m = 1 n = 1 m n 3 m + n ] \large \displaystyle S = \frac12 \left [ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{mn} {3^{m+n}} \right]

S = 1 2 [ m = 1 m 3 m n = 1 n 3 n ] \large \displaystyle S = \frac12 \left [ \sum_{m=1}^{\infty} \frac{m}{3^{m}} \sum_{n=1}^{\infty} \frac{n} {3^{n}} \right]

Using the above result (highlighted in green) in each sum, with x = 1 3 x = \frac13 :

S = 1 2 [ 3 4 3 4 ] \large \displaystyle S = \frac12 \left [ \frac34 \cdot \frac34 \right]

S = 9 32 = 0.28125 \color{#3D99F6} \boxed{\large \displaystyle S = \frac{9}{32} = 0.28125}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...