A tricky trigonometric integral

Calculus Level 5

0 π 3 ( tan 2 ( x ) cos 3 ( x 2 ) + 9 2 cos ( 3 x 4 ) 2 sin ( 3 x 4 ) + 1 + 16 sin ( x ) 4 cos ( x ) + 1 ) d x = n ( ln ( n + 1 ) + 1 ) \int_0^{\frac{\pi }{3}} \left(\frac{\tan ^2(x)}{\cos ^3\left(\frac{x}{2}\right)}+\frac{9 \sqrt{2} \cos \left(\frac{3 x}{4}\right)}{2 \sin \left(\frac{3 x}{4}\right)+1}+\frac{16 \sin (x)}{4 \cos (x)+1} \right) dx = n (\ln (n+1)+1)

What is the value of n n ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Oct 14, 2020

Split the integral into 3 integrals, and denote them as A , B , C A,B,C , respectively. The latter two integrals can be expressed as c f ( x ) f ( x ) d x \displaystyle \int c \cdot \dfrac{f'(x)}{f(x)} \, dx for some constant c c . Using the property d d x ln ( f ( x ) ) = f ( x ) f ( x ) \frac d{dx} \ln(f(x)) = \frac{f'(x)}{f(x)} . We can now evaluate B B to be:

B = 9 2 0 π / 3 cos ( 3 x / 4 ) 2 sin ( 3 x / 4 ) + 1 d x = y = 3 x / 4 9 2 4 3 ln ( 1 + 2 ) = 6 2 ln ( 1 + 2 ) B = 9 \sqrt2 \int_0^{\pi/3} \dfrac{ \cos(3x/4)}{2\sin(3x/4) + 1} \, dx \stackrel{y = 3x/4}{=} 9 \sqrt2 \cdot \frac43 \cdot \ln(1 + \sqrt2) = 6\sqrt2 \ln(1 + \sqrt2)

Analogously, C = 4 ln ( 5 3 ) C = 4 \ln(\frac53) .

We are left to solve the most tedious integral, A A . In the intermediate step below, we will be using the double angle formula, tan ( 2 X ) = sin ( 2 X ) cos ( 2 X ) = 2 sin X cos X 1 2 sin 2 X \tan (2X) = \dfrac{\sin(2X)}{\cos(2X)} = \dfrac{2\sin X \cos X}{1 - 2\sin^2 X} . A = 0 π / 3 tan 2 ( x ) cos 3 ( x / 2 ) d x = y = x / 2 2 0 π / 6 ( 2 sin y cos y 1 2 sin 2 y ) 2 1 cos 3 y d y = 8 0 π / 6 sin 2 y cos y 1 ( 1 2 sin 2 y ) 2 d y = z = sin y 0 1 / 2 z 2 1 z 2 8 ( 1 2 z 2 ) 2 d z . A = \int_0^{\pi /3} \dfrac{\tan^2 (x)}{\cos^3 (x/2)} \, dx \stackrel{y =x/2}{=} 2 \int_0^{\pi/6} \left( \dfrac{2\sin y \cos y}{1 - 2\sin^2 y}\right)^2 \cdot \frac1{\cos^3 y} \, dy = 8 \int_0^{\pi/6} \dfrac{\sin^2 y}{\cos y} \cdot \frac1{(1-2\sin^2 y)^2} \, dy \stackrel{z = \sin y}{=} \int_0^{1/2} \dfrac{z^2}{1-z^2} \cdot \frac8{(1-2z^2)^2} \, dz. By partial fraction decomposition, the integrand in the last integral above is equal to 16 2 z 2 1 + 8 ( 2 z 2 1 ) 2 + 4 z + 1 4 z 1 . \dfrac{16}{2z^2 - 1} + \dfrac8{(2z^2 - 1)^2} + \dfrac4{z+1} - \dfrac4{z-1}. Going through all the tedious algebra, we get A = 4 + 4 ln 3 3 2 ln ( 3 + 2 2 ) . A = 4 + 4 \ln3 - 3\sqrt2 \ln(3 + 2\sqrt2) .

Hence, the integral in question is equal to A + B + C = 4 ( ln 5 + 1 ) A+B+C=4 (\ln5 + 1) . The answer is 4 \boxed4 .

Very nice.

Srinivasa Raghava - 7 months, 3 weeks ago

Log in to reply

Is this your intended approach? Or do you have something that is actually elegant?

Pi Han Goh - 7 months, 2 weeks ago

Studly solution indeed, Pi Han!

tom engelsman - 7 months, 2 weeks ago

Log in to reply

Risqué indeed.

Pi Han Goh - 7 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...