Let sin ( X ∘ ) = 4 sin ( 2 0 ∘ ) sin ( 4 0 ∘ ) sin ( 8 0 ∘ ) .
What is the smallest positive integer value of X that satisfies the equation above?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that
4 sin ( x ) sin ( 6 0 ∘ − x ) sin ( 6 0 ∘ + x ) = sin ( x ) ( 3 cos ( x ) − sin ( x ) ) ( 3 cos ( x ) + sin ( x ) ) =
sin ( x ) ( 3 cos 2 ( x ) − sin 2 ( x ) ) = sin ( x ) ( 3 − 4 sin 2 ( x ) ) = 3 sin ( x ) − 4 sin 3 ( x ) = sin ( 3 x ) ,
since
sin ( 3 x ) = sin ( 2 x + x ) = sin ( 2 x ) cos ( x ) + cos ( 2 x ) sin ( x ) =
2 sin ( x ) cos 2 ( x ) + ( 1 − 2 sin 2 ( x ) ) sin ( x ) = 2 sin ( x ) ( 1 − sin 2 ( x ) ) + sin ( x ) − 2 sin 3 ( x ) =
3 sin ( x ) − 4 sin 3 ( x ) .
So with x = 2 0 ∘ we have that 4 sin ( 2 0 ∘ ) sin ( 4 0 ∘ ) sin ( 8 0 ∘ ) = sin ( 3 × 2 0 ∘ ) = sin ( 6 0 ∘ ) ,
and thus X = 6 0 .
Problem Loading...
Note Loading...
Set Loading...
sin ( X ∘ ) = 4 sin ( 2 0 ∘ ) sin ( 4 0 ∘ ) sin ( 8 0 ∘ ) = 2 sin ( 8 0 ∘ ) ⋅ 2 sin ( 2 0 ∘ ) sin ( 4 0 ∘ ) = 2 sin ( 8 0 ∘ ) ⋅ ( cos ( 2 0 ∘ ) − c o s ( 6 0 ∘ ) ) = 2 sin ( 8 0 ∘ ) ⋅ ( cos ( 2 0 ∘ ) − 2 1 ) = 2 sin ( 8 0 ∘ ) cos ( 2 0 ∘ ) − sin ( 8 0 ∘ ) = ( sin ( 1 0 0 ∘ ) + sin ( 6 0 ∘ ) ) − sin ( 8 0 ∘ ) = sin ( π − 8 0 ) + sin ( 6 0 ∘ ) ) − sin ( 8 0 ∘ ) = sin ( 8 0 ∘ ) + sin ( 6 0 ∘ ) − sin ( 8 0 ∘ ) = sin ( 6 0 ∘ ) ∴ X ∘ = 6 0 ∘