A trig for the day

Geometry Level 3

Let sin ( X ) = 4 sin ( 2 0 ) sin ( 4 0 ) sin ( 8 0 ) \sin(X^\circ) = 4\sin(20^\circ) \sin(40^\circ) \sin(80^\circ) .

What is the smallest positive integer value of X X that satisfies the equation above?


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nikhil Raj
Jun 7, 2017

sin ( X ) = 4 sin ( 2 0 ) sin ( 4 0 ) sin ( 8 0 ) = 2 sin ( 8 0 ) 2 sin ( 2 0 ) sin ( 4 0 ) = 2 sin ( 8 0 ) ( cos ( 2 0 ) c o s ( 6 0 ) ) = 2 sin ( 8 0 ) ( cos ( 2 0 ) 1 2 ) = 2 sin ( 8 0 ) cos ( 2 0 ) sin ( 8 0 ) = ( sin ( 10 0 ) + sin ( 6 0 ) ) sin ( 8 0 ) = sin ( π 80 ) + sin ( 6 0 ) ) sin ( 8 0 ) = sin ( 8 0 ) + sin ( 6 0 ) sin ( 8 0 ) = sin ( 6 0 ) X = 6 0 \sin(X^\circ) =4\sin(20^\circ) \sin(40^\circ) \sin(80^\circ) \\ = 2\sin(80^\circ) \cdot 2\sin(20^\circ) \sin(40^\circ) \\ =2\sin(80^\circ) \cdot (\cos(20^\circ) - cos(60^\circ)) \\ = 2\sin(80^\circ) \cdot (\cos(20^\circ) - \dfrac{1}{2}) \\ =2\sin(80^\circ)\cos(20^\circ) - \sin(80^\circ) \\ = (\sin(100^\circ) + \sin(60^\circ)) - \sin(80^\circ) \\ = \sin(\pi - 80) + \sin(60^\circ)) - \sin(80^\circ) = \sin(80^\circ) +\sin(60^\circ) - \sin(80^\circ) = \sin(60^\circ) \\ \therefore X^\circ = \large\boxed{60^\circ}

Note that

4 sin ( x ) sin ( 6 0 x ) sin ( 6 0 + x ) = sin ( x ) ( 3 cos ( x ) sin ( x ) ) ( 3 cos ( x ) + sin ( x ) ) = 4\sin(x)\sin(60^{\circ} - x)\sin(60^{\circ} + x) = \sin(x)(\sqrt{3}\cos(x) - \sin(x))(\sqrt{3}\cos(x) + \sin(x)) =

sin ( x ) ( 3 cos 2 ( x ) sin 2 ( x ) ) = sin ( x ) ( 3 4 sin 2 ( x ) ) = 3 sin ( x ) 4 sin 3 ( x ) = sin ( 3 x ) \sin(x)(3\cos^{2}(x) - \sin^{2}(x)) = \sin(x)(3 - 4\sin^{2}(x)) = 3\sin(x) - 4\sin^{3}(x) = \sin(3x) ,

since

sin ( 3 x ) = sin ( 2 x + x ) = sin ( 2 x ) cos ( x ) + cos ( 2 x ) sin ( x ) = \sin(3x) = \sin(2x + x) = \sin(2x)\cos(x) + \cos(2x)\sin(x) =

2 sin ( x ) cos 2 ( x ) + ( 1 2 sin 2 ( x ) ) sin ( x ) = 2 sin ( x ) ( 1 sin 2 ( x ) ) + sin ( x ) 2 sin 3 ( x ) = 2\sin(x)\cos^{2}(x) + (1 - 2\sin^{2}(x))\sin(x) = 2\sin(x)(1 - \sin^{2}(x)) + \sin(x) - 2\sin^{3}(x) =

3 sin ( x ) 4 sin 3 ( x ) 3\sin(x) - 4\sin^{3}(x) .

So with x = 2 0 x = 20^{\circ} we have that 4 sin ( 2 0 ) sin ( 4 0 ) sin ( 8 0 ) = sin ( 3 × 2 0 ) = sin ( 6 0 ) 4\sin(20^{\circ})\sin(40^{\circ})\sin(80^{\circ}) = \sin(3 \times 20^{\circ}) = \sin(60^{\circ}) ,

and thus X = 60 X = \boxed{60} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...