A trig identity

Geometry Level 4

Given that cos 2 θ = 1 + 5 4 \cos2\theta = \dfrac{1+\sqrt5}4 , if tan 2 ( 3 θ ) tan 2 ( θ ) \tan^2 (3\theta) \tan^2(\theta) is equal to m n \dfrac mn , where m m and n n are coprime positive integers, find m + n m+n .


Adapted from Purdue Problem of the week.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Let t = tan θ t = \tan \theta , then using the half-angle identity of cosine, we have:

cos ( 2 θ ) = 1 tan 2 θ 1 + tan 2 θ 1 t 2 1 + t 2 = 1 + 5 4 4 4 t 2 = 1 + 5 + ( 1 + 5 ) t 2 ( 5 + 5 ) t 2 = 3 5 t 2 = 3 5 5 + 5 = ( 3 5 ) ( 5 5 ) 25 5 = 20 8 5 20 = 5 2 5 \begin{aligned} \cos (2\theta) & =\frac{1-\tan^2 \theta}{1+\tan^2 \theta} \\ \Rightarrow \frac{1-t^2}{1+t^2} & = \frac{1+\sqrt{5}}{4} \\ 4 - 4t^2 & = 1+\sqrt{5} + (1+\sqrt{5})t^2 \\ (5+\sqrt{5})t^2 & = 3 - \sqrt{5} \\ \Rightarrow t^2 & = \frac{3 - \sqrt{5}}{5+\sqrt{5}} = \frac{(3 - \sqrt{5})(5-\sqrt{5})}{25-5} = \frac{20-8\sqrt{5}}{20} = \frac{\sqrt{5} - 2}{\sqrt{5}} \end{aligned}

tan 2 ( 3 θ ) tan 2 θ = ( t ( 3 t 2 ) 1 3 t 2 ) 2 t 2 = t 4 ( 3 t 2 ) 2 ( 1 3 t 2 ) 2 = ( ( 5 2 ) ( 2 5 + 2 ) 5 ( 6 2 5 ) ) 2 = ( ( 5 2 ) ( 5 + 1 ) 5 ( 3 5 ) ) 2 = ( 3 5 5 ( 3 5 ) ) 2 = 1 5 \begin{aligned} \tan^2 (3 \theta) \tan^2 \theta & = \left(\frac{t(3-t^2)}{1-3t^2}\right)^2t^2 \\ & = \frac{t^4(3-t^2)^2}{(1-3t^2)^2} \\ & = \left(\frac{(\sqrt{5}-2)(2\sqrt{5}+2)}{\sqrt{5}(6-2\sqrt{5})}\right)^2 \\ & = \left(\frac{(\sqrt{5}-2)(\sqrt{5}+1)}{\sqrt{5}(3-\sqrt{5})}\right)^2 \\ & = \left(\frac{3-\sqrt{5}}{\sqrt{5}(3-\sqrt{5})}\right)^2 \\ & = \frac{1}{5} \end{aligned}

m + n = 1 + 5 = 6 \Rightarrow m + n = 1 + 5 = \boxed{6}

Nice approach. Up voted. A little shortening using componando-dividendo. 1 t 2 1 + t 2 = 1 + 5 4 , 1 t 2 2 = 1 + 5 5 ( 1 + 5 ) = 5 5 . t 2 = 1 2 5 . T a n 2 ( 3 θ ) T a n 2 θ = ( t ( 3 t 2 ) 1 3 t 2 ) 2 t 2 = { t 2 ( 3 t 2 ) 1 3 t 2 } 2 { ( 1 2 5 ) 2 ( 1 + 1 5 ) 2 ( 1 + 3 5 ) } 2 = { 1 5 ( 5 2 ) ( 5 + 1 ) 5 3 } 2 = { 1 5 3 5 5 3 } 2 . T a n 2 ( 3 θ ) T a n 2 θ = 1 5 . m + n = 6 \text{Nice approach. Up voted. A little shortening using componando-dividendo.}\\ \dfrac{1-t^2}{1+t^2} = \frac{1+\sqrt{5}}{4} ,~~\implies ~\dfrac{1-t^2} 2= \frac{1+\sqrt{5}}{\sqrt5*(1+\sqrt{5})}=\dfrac {\sqrt5} 5. ~~~~~~~~\implies~\color{#3D99F6}{t^2= 1 - \dfrac 2 {\sqrt5} }.\\ \therefore~ Tan^2 (3 \theta)*Tan^2 \theta = \left(\dfrac{t(3-t^2)}{1-3t^2}\right)^2t^2=\left \{\dfrac{t^2(3-t^2)}{1-3t^2} \right \}^2 \\ \left \{\dfrac{(1 - \frac 2 {\sqrt5})2*(1 + \frac 1 {\sqrt5})}{2*(-1 + \frac 3 {\sqrt5})}\right \}^2= \left \{\dfrac 1 {\sqrt5}*\dfrac{(\sqrt5 - 2)(\sqrt5 +1)}{\sqrt5 - 3}\right \}^2 =\left \{\dfrac 1 {\sqrt5}*\dfrac{3 - \sqrt5} {\sqrt5 - 3}\right \}^2.\\ Tan^2 (3 \theta)*Tan^2 \theta=\dfrac 1 5. ~~~~~~~ m+n= ~~6

Niranjan Khanderia - 5 years, 4 months ago
Joe Lee
Feb 4, 2016

Recall: cos ( θ 1 + θ 2 ) = cos θ 1 cos θ 2 sin θ 1 sin θ 2 \cos{\left(\theta_1+\theta_2\right)}= \cos{\theta_1}\cos{\theta_2} - \sin{\theta_1}\sin{\theta_2} and cos ( θ 1 θ 2 ) = cos θ 1 cos θ 2 + sin θ 1 sin θ 2 \cos{\left(\theta_1-\theta_2\right)} = \cos{\theta_1}\cos{\theta_2} + \sin{\theta_1}\sin{\theta_2} Thus we have: tan 2 ( 3 θ ) tan 2 ( θ ) = ( sin 3 θ sin θ cos 3 θ cos θ ) 2 \tan^2{(3\theta)}\tan^2{\left(\theta\right)} = \left(\frac{\sin{3\theta}\sin{\theta}}{\cos{3\theta}\cos{\theta}}\right)^2

sin 3 θ sin θ = sin 3 θ sin θ sin 3 θ sin θ + cos 3 θ cos θ cos 3 θ cos θ + sin 3 θ sin θ \sin{3\theta}\sin{\theta} = \sin{3\theta}\sin{\theta} - \sin{3\theta}\sin{\theta} + \cos{3\theta}\cos{\theta} -\cos{3\theta}\cos{\theta} + \sin{3\theta}\sin{\theta}

2 sin 3 θ sin θ = sin 3 θ sin θ sin 3 θ sin θ + cos 3 θ cos θ cos 3 θ cos θ 2\sin{3\theta}\sin{\theta} = \sin{3\theta}\sin{\theta} - \sin{3\theta}\sin{\theta} + \cos{3\theta}\cos{\theta} - \cos{3\theta}\cos{\theta}

sin 3 θ sin θ = ( cos 3 θ cos θ + sin 3 θ sin θ ) ( cos 3 θ cos θ + sin 3 θ sin θ ) 2 \sin{3\theta}\sin{\theta} = \frac{ \left(\cos{3\theta}\cos{\theta}+\sin{3\theta}\sin{\theta}\right) -\left(\cos{3\theta}\cos{\theta}+\sin{3\theta}\sin{\theta}\right)}{2}

sin 3 θ sin θ = 1 2 ( cos ( 3 θ θ ) ) cos ( 3 θ + θ ) ) = 1 2 ( cos 2 θ cos 4 θ ) \sin{3\theta}\sin{\theta} = \frac{1}{2} \left( \cos{\left(3\theta - \theta)\right)} - \cos{\left(3\theta+\theta\right)}\right) = \frac{1}{2}\left(\cos{2\theta} - \cos{4\theta}\right)

We can transform the cosine terms in a similar fashion and we get:

cos 3 θ cos θ = 1 2 ( cos 2 θ + cos 4 θ ) \cos{3\theta}\cos{\theta}=\frac{1}{2} \left(\cos{2\theta}+\cos{4\theta}\right)

Thus our combined expression looks as follows:

tan 2 ( 3 θ ) tan 2 ( θ ) = ( cos 2 θ cos 4 θ cos 2 θ + cos 4 θ ) 2 \tan^2{(3\theta)}\tan^2{\left(\theta\right)} = \left(\frac{\cos{2\theta} - \cos{4\theta}}{\cos{2\theta} + \cos{4\theta}}\right)^2

Recall: cos 4 θ = cos 2 2 θ sin 2 θ = 2 cos 2 2 θ 1 \\ \cos{4\theta} = \cos^2{2\theta} - \sin{2\theta} = 2\cos^2{2\theta} - 1 \\

Therefore our above expression can be simplified as follows:

( cos 2 θ cos 4 θ cos 2 θ + cos 4 θ ) 2 = ( cos 2 θ ( 2 cos 2 2 θ 1 ) cos 2 θ + ( 2 cos 2 2 θ 1 ) ) 2 = ( cos 2 θ 2 cos 2 2 θ + 1 cos 2 θ + 2 cos 2 2 θ 1 ) 2 \left(\frac{\cos{2\theta} - \cos{4\theta}}{\cos{2\theta} + \cos{4\theta}}\right)^2 =\left(\frac{\cos{2\theta} - \left(2\cos^2{2\theta} - 1\right)} {\cos{2\theta} + \left(2\cos^2{2\theta} - 1\right)}\right)^2= \left(\frac{ \cos{2\theta} - 2\cos^2{2\theta}+ 1 } {\cos{2\theta} + 2\cos^2{2\theta} -1}\right)^2 cos 2 2 θ = ( 1 4 ) 2 ( 1 + 5 ) 2 = 6 + 2 5 16 = 3 + 5 8 \cos^2{2\theta} = \left(\frac{1}{4}\right)^2 \left(1+\sqrt{5}\right)^2 = \frac{6+2\sqrt{5}}{16} = \frac{3 + \sqrt{5}}{8}

( 1 4 ( 1 + 5 ) 2 8 ( 3 + 5 ) + 1 1 4 ( 1 + 5 ) + 2 8 ( 3 + 5 ) 1 ) 2 = ( 2 4 + 1 4 + 2 5 4 4 ) 2 = ( 1 5 ) 2 = 1 5 \left(\frac{\frac{1}{4}\left(1+\sqrt{5}\right) - \frac{2}{8} \left(3 +\sqrt{5}\right) +1} {\frac{1}{4}\left(1+\sqrt{5}\right) + \frac{2}{8} \left(3 +\sqrt{5}\right) - 1}\right)^2 =\left( \frac{-\frac{2}{4} + 1} {\frac{4+2\sqrt{5}-4}{4}} \right)^2 = \left(\frac{1}{\sqrt{5}}\right)^2 = \frac{1}{5}

Thus m = 1 , n = 5 \ m = 1, \ n = 5 \ and m + n = 6 m+n = 6

I think there is some typo in lines 2-5. Please check.

Niranjan Khanderia - 5 years, 4 months ago

The fraction at the end of the second last line should be 1 5 n o t 1 6 \quad \dfrac {1}5 \quad not \quad \dfrac {1}6 .

Bob Kadylo - 5 years, 4 months ago
Bob Kadylo
Feb 8, 2016

Given : cos 2 θ = 1 + 5 4 = ϕ 2 \cos 2 \theta = \dfrac {1+\sqrt 5}4 = \dfrac {\phi}2 with ϕ = 1 + 5 2 \phi = \dfrac{1+\sqrt 5}2 \quad being the "golden ratio"

then θ = π 10 \theta = \dfrac{\pi}{10} is a solution which leads to tan 2 ( 3 θ ) tan 2 ( θ ) = . 2 \quad \tan^2(3\theta) \tan^2(\theta) =.2 \quad

and . 2 = 1 5 .2 = \dfrac {1}5 with 1 + 5 = 6 1+5= \boxed {6} \quad which was the answer sought.

Another Fun Fact ! : cos ( π 5 ) = ϕ 2 \cos( \dfrac {\pi}5 ) = \dfrac {\phi}2 \quad

Moderator note:

How did you go from "then θ = π 10 \theta = \dfrac{\pi}{10} is a solution" to "which leads to tan 2 ( 3 θ ) tan 2 ( θ ) = . 2 \quad \tan^2(3\theta) \tan^2(\theta) =.2 \quad "?

Nice way of looking at the problem. Up voted.

Niranjan Khanderia - 5 years, 4 months ago

How did you go from "then θ = π 10 \theta = \dfrac{\pi}{10} is a solution" to "which leads to tan 2 ( 3 θ ) tan 2 ( θ ) = . 2 \quad \tan^2(3\theta) \tan^2(\theta) =.2 \quad "?

Calvin Lin Staff - 5 years, 3 months ago

Log in to reply

I used direct substitution: t a n 2 ( . 3 π ) t a n 2 ( . 1 π ) = . 2 tan^2(.3\pi)*tan^2(.1\pi)=.2 using a TI84+ calculator.

Bob Kadylo - 5 years, 3 months ago

Log in to reply

Ah ic. Thanks for explaining.

Calvin Lin Staff - 5 years, 3 months ago

C o s 2 X = C o s 2 X + 1 2 = 1 + 5 4 + 1 2 = 5 + 5 8 S i n 2 X = 1 C o s 2 X = 3 5 8 S i n 3 X = 3 S i n X 4 S i n 3 X , C o s 3 X = 3 C o s X + 4 C o s 3 X T a n 3 X T a n X = 3 S i n X 4 S i n 3 X 3 C o s X + 4 C o s 3 X S i n X C o s X = S i n 2 X C o s 2 X 3 4 S i n 2 X 3 + 4 C o s 2 X = 3 5 8 5 + 5 8 3 4 3 5 8 3 + 4 5 + 5 8 = ( 3 5 ) ( 5 + 5 ) 6 ( 3 5 ) 6 + 5 + 5 = 9 4 5 ( 5 + 1 ) ( 1 + 5 ) = 4 4 5 . T a n 2 3 X T a n 2 X = 1 5 . m + n = 6 Cos^2X=\dfrac{Cos2X + 1} 2 =\dfrac{ \frac {1+\sqrt5} 4 + 1} 2=\color{#3D99F6}{\dfrac{5+\sqrt5} 8}\\ Sin^2X=1 - Cos^2X=\color{#3D99F6}{\dfrac{3 - \sqrt5} 8}\\ \color{#3D99F6}{Sin3X=3SinX - 4Sin^3X, ~~~~~~~Cos3X= - 3CosX + 4Cos^3X}\\ \therefore ~Tan3X*TanX=\large \dfrac{3SinX - 4Sin^3X}{ - 3CosX + 4Cos^3X}*\dfrac{ SinX}{CosX}\\ =\dfrac{ Sin^2X}{Cos^2X}* \dfrac{3 - 4Sin^2X}{ - 3 + 4Cos^2X} \\ = \dfrac{\dfrac{3 - \sqrt5} 8 } {\dfrac{5+\sqrt5} 8}* \dfrac{3 - 4\dfrac{3 - \sqrt5} 8}{ - 3 + 4\dfrac{5 + \sqrt5} 8} \\ = \dfrac{ (3 - \sqrt5 ) } {( 5+\sqrt5 )}* \dfrac{6 - (3 - \sqrt5)}{ - 6 + 5 + \sqrt5 } \\ = \dfrac{9 - 4}{\sqrt5*( \sqrt5+1 )*(-1 + \sqrt5)}=\dfrac 4 {4*\sqrt5}.\\ \therefore~Tan^2 3X*Tan^2 X=\dfrac 1 5. ~~\implies m+n= \Large \color{#D61F06}{6}

Your componendo and dividendo solution is the best! KUDOS!!

Pi Han Goh - 5 years, 4 months ago

Log in to reply

Thank you.

Niranjan Khanderia - 5 years, 4 months ago
Kafi Shabbir
Feb 5, 2016

hahahaha, I used my Calculator nad found that theta = 18

the original problem stated everything in numbers instead of theta. I just changed it because I did not want to write out the numbers.

Joe Lee - 5 years, 4 months ago

Log in to reply

u are right dude

Kafi Shabbir - 5 years, 4 months ago

Fun fact: The solution to tan ( 3 θ ) tan ( θ ) \tan (3\theta) \tan(\theta) which in the context of this problem is 1 5 \frac{1}{\sqrt{5}} is actually a = 1 2 ϕ 1 a = \frac{1}{2\phi - 1} where ϕ \phi is the golden ratio, a very important and beautiful constant in nature. Just thought it was really cool that such a connection existed

Joe Lee - 5 years, 4 months ago
Amed Lolo
Feb 14, 2016

expression=tan^2(t).tan^2(3t). =1÷(cot^2 (t).cot^2(3t))=m\n. m=1,n=cot^2 (t)+cot^2 (3t). cos(2t)=1+√5\4. So 2cos^2(t)=5+√5\4. cos ^2(t)=5+√5\8 so sin^2(t)=3-√5\8. cos3t=cos2t.cos t-sin2t.sint. =cos t(cos2t-2sin^2(t)). cos ^2(3t)=cos^2(t).((2cos^2(t)-1)-2+2cos^2(t)) ^2. cos^2(t).(4cos^2(t)-3)^2. =(5+√5)\8×(4×(5+√5)\8-3)^2=5-√5\8. so sin^2 (3t)=3-√5\8. n=((5+√5)÷8) ×(8÷(3-√5)×((5-√5)÷8)×(8÷(3-√5)) n=(5-√5).(5+√5)(3-√5).(3+√5)=20÷4=5. m+n=1+5=6#####

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...