A Trig Limit

Calculus Level 3

Find lim n n × sin ( 36 0 n ) . \lim _{ n\rightarrow \infty }{ n\times \sin \left(\frac { 360^\circ }{ n } \right) } .

Round your answer to the nearest tenth.


The answer is 6.3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Oct 13, 2014

It is known that sin x = x 1 6 x 3 + 1 120 x 5 . . . . \sin {x} = x - \frac {1}{6}x^3 + \frac {1}{120}x^5-.... Therefore lim x 0 sin x = x \lim _{ x\rightarrow 0 }{ \sin { x } } = x .

Calculus only works with radian and we have 36 0 o n = 2 π n \frac {360^o}{n} = \frac {2\pi}{n} .

We note that when n 2 π n 0 lim n sin 2 π n = 2 π n n \rightarrow \infty \Rightarrow \frac {2\pi}{n} \rightarrow 0 \Rightarrow \lim _{ n\rightarrow \infty }{ \sin {\frac{2\pi}{n}} } = \frac {2\pi} {n}

lim n n sin 2 π n = n × 2 π n = 2 π 6.3 \Rightarrow \lim _{ n\rightarrow \infty }{ n \sin { \frac {2\pi}{n} } } = n \times \frac {2\pi}{n} = 2\pi \approx \boxed {6.3}

We recall that 36 0 = 2 π rad 360^{\circ} = 2 \pi \textrm{ rad} and rewrite the limit

lim n n sin ( 2 π n ) = lim n sin ( 2 π 1 n ) 1 n \lim_{n \rightarrow \infty} n \cdot \sin(\frac{2\pi}{n}) = \lim_{n \rightarrow \infty} \frac{\sin(2 \pi \cdot \frac{1}{n})}{\frac{1}{n}}

Let m = 1 n m = \frac{1}{n} . Then

lim n n sin ( 2 π n ) = lim m 0 sin ( 2 π m ) m \lim_{n \rightarrow \infty} n \cdot \sin(\frac{2 \pi}{n}) = \lim_{m \rightarrow 0} \frac{\sin( 2 \pi \cdot m)}{m}

Now an application of l'Hôpital's rule helps us evaluate the limit

lim m 0 sin ( 2 π m ) m = lim m 0 2 π cos ( 2 π m ) 1 = 2 π \lim_{m \rightarrow 0} \frac{\sin( 2 \pi \cdot m)}{m} = \lim_{m \rightarrow 0} \frac{2 \pi \cos(2 \pi \cdot m)}{1} = 2 \pi

Finally, 2 π 6.3 2 \pi \approx 6.3

1 n = x \frac{1}{n} = x = > lim n n × s i n ( 36 0 o n ) = lim x 0 s i n ( 2 π x ) x = 2 π => \displaystyle \lim_{n\to \infty} n\times sin(\frac{360^{o}}{n})=\displaystyle \lim_{x\to 0} \frac{sin(2\pi x)}{x}=2\pi

I substituted 9999999999 as the value of n, and i got 2pi..

Ankush Gogoi
Oct 17, 2014

360 degree is 2pie radian so limit n tends to infinity [n*sin(2pie/n)} can be solved by making the series expansion of sine....on simplification only the first term will remain and others become 0 as n tends to infinity. hence answer is 2pie.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...