A Trig-y Substitution

Algebra Level pending

Let a n = 2 a n 1 1 a n 1 2 a_{n}=\dfrac{2a_{n-1}}{1-a_{n-1}^{2}} for all n 2 n\geq{2} , and a 1 = 1 3 a_{1}=\dfrac{1}{\sqrt{3}} . Find the value of a 2018 a_{2018} .


The answer is 1.73.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 18, 2018

a n = 2 a n 1 1 a n 1 2 Let a n = tan θ n tan θ n = 2 tan θ n 1 1 tan 2 θ n 1 = tan ( 2 θ n 1 ) \begin{aligned} a_n & = \frac {2a_{n-1}}{1-a_{n-1}^2} & \small \color{#3D99F6} \text{Let }a_n = \tan \theta_n \\ \tan \theta_n & = \frac {2\tan \theta_{n-1}}{1-\tan^2 \theta_{n-1}} = \tan (2\theta_{n-1}) \end{aligned}

Since a 1 = 1 3 a_1 = \dfrac 1{\sqrt 3} , θ 1 = π 6 \implies \theta_1 = \dfrac \pi 6 . Then we have:

a 2 = tan ( 2 θ 1 ) = tan 1 3 π = 3 a 3 = tan 2 3 π = 3 a 4 = tan 4 3 π = tan 1 3 π = 3 a 5 = tan 2 3 π = 3 = a n = { 3 if n is even. 3 if n is odd. for n 2 a 2018 = 3 1.732 \begin{aligned} a_2 & = \tan (2\theta_1) = \tan \frac 13 \pi = \sqrt 3 \\ a_3 & = \tan \frac 23 \pi = - \sqrt 3 \\ a_4 & = \tan \frac 43 \pi = \tan \frac 13 \pi = \sqrt 3 \\ a_5 & = \tan \frac 23 \pi = - \sqrt 3 \\ \cdots & = \cdots \\ \implies a_n & = \begin{cases} \sqrt 3 & \text{if }n \text{ is even.} \\ - \sqrt 3 & \text{if }n \text{ is odd.} \end{cases} & \small \color{#3D99F6} \text{for }n \ge 2 \\ \implies a_{2018} & = \sqrt 3 \approx \boxed{1.732} \end{aligned}

Jonathan Poss
Nov 17, 2018

Note that a 1 = t a n ( π 6 ) a_{1}=tan(\frac{\pi}{6}) . Letting a n 1 = t a n ( x ) a_{n-1}=tan(x) gives a n = t a n ( 2 x ) a_{n}=tan(2x) . Because each successive term is tangent of two times the previous term, the n t h nth term can be written as a n = t a n ( 2 n 1 π 6 ) a_{n}=tan(\frac{2^{n-1}\pi}{6}) or a n = t a n ( 2 n 2 π 3 ) a_{n}=tan(\frac{2^{n-2}\pi}{3}) . The 2018th term in the sequence would then be the value of t a n ( 2 2016 π 3 ) tan(\frac{2^{2016}\pi}{3}) . The value of t a n ( π 3 ) tan(\frac{\pi}{3}) cycles mod 6, so we just need to find the value of 2 2016 2^{2016} (mod 6). Using Chinese Remainder Theorem, we see that 2 2016 4 2^{2016}\equiv{4} (mod 6), so a 2018 = t a n ( 4 π 3 ) = 3 ) a_{2018}=tan(\frac{4\pi}{3})=\sqrt{3}) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...