A Trigo limit (1)

Calculus Level 3

L = lim x 0 ( cos ( π 4 + x ) sec ( π 4 x ) ) 1 x L=\large\lim _{ x\rightarrow 0 }{ \left ( \cos { \left( \frac { \pi }{ 4 } +x \right) \sec { \left( \frac { \pi }{ 4 } -x \right) } } \right ) } ^{ \frac { 1 }{ x } }

For L L as defined above, what is ln ( 1 L ) \ln { \left( \frac { 1 }{ L } \right) } ?

1 -3 -2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: L'Hopital's Rule - Basic

L = lim x 0 [ cos ( π 4 + x ) sec ( π 4 x ) ] 1 x A 1 case, see note below. = lim x 0 exp [ ( cos ( π 4 + x ) sec ( π 4 x ) 1 ) x ] A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 0 exp [ sin ( π 4 + x ) sec ( π 4 x ) cos ( π 4 + x ) sec ( π 4 x ) tan ( π 4 x ) 1 ] Differentiate up and down w.r.t. x = e 2 \begin{aligned} L & = \lim_{x \to 0} \left[\cos \left(\frac \pi 4+x\right) \sec \left(\frac \pi 4-x\right) \right]^\frac 1x & \small \color{#3D99F6} \text{A }1^\infty \text{ case, see note below.} \\ & = \lim_{x \to 0} \exp \left[ \frac {\left(\cos \left(\frac \pi 4+x\right) \sec \left(\frac \pi 4-x\right) - 1\right)}x \right] & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{x \to 0} \exp \left[ \frac {-\sin \left(\frac \pi 4+x\right) \sec \left(\frac \pi 4-x\right) - \cos \left(\frac \pi 4+x\right) \sec \left(\frac \pi 4-x\right) \tan \left(\frac \pi 4-x\right)}1 \right] & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = e^{-2} \end{aligned}

ln ( 1 L ) = ln e 2 = 2 \implies \ln \left(\frac 1L \right) = \ln e^2 = \boxed{2}


Note: see 2nd method

For lim x a [ f ( x ) g ( x ) ] h ( x ) = 1 \displaystyle \lim_{x \to a} \left[\frac {f(x)}{g(x)}\right]^{h(x)} = 1^\infty , lim x a [ f ( x ) g ( x ) ] h ( x ) = exp [ lim x a h ( x ) ( f ( x ) g ( x ) 1 ) ] \implies \displaystyle \lim_{x \to a} \left[\frac {f(x)}{g(x)}\right]^{h(x)} = \exp \left[\lim_{x \to a} h(x) \left(\frac {f(x)}{g(x)}-1\right) \right]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...