Let
f ( x ) = sin 2 x − 2 1 sin 2 x × sin 2 x + 3 1 sin 3 x × sin 3 x − …
Then f ( 1 2 π ) can be written as
tan − 1 ( c a − b )
where b is square free & a , b , c ∈ N . Find the value of a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1) lo g ( 1 + x ) = x − 2 x 2 + 3 x 3 + ⋯
2) sin ( r x ) = 2 i e i r x − e − i r x
3) substitute into equation
4) therefore
2 i f ( x ) = r = 1 ∑ ∞ [ r ( − 1 ) r + 1 ( e i x sin x ) r − r ( − 1 ) r + 1 ( e − i x sin x ) r ]
from (1)
2 i f ( x ) = lo g ( 1 + e i x sin x ) − lo g ( 1 + e − i x sin x ) = lo g ( 1 + e − i x sin x 1 + e i x sin x )
2 i f ( x ) = lo g ( cos x sin x + 1 − i sin x sin x cos x sin x + 1 + i sin x sin x )
2 i f ( x ) = lo g [ e 2 i ar g ( cos x sin x + 1 + i sin x sin x ) ] ....( bcoz it is A e i k / A e − i k = e i 2 k , k is arg)
hence
f ( x ) = ar g ( cos x sin x + 1 + i sin x sin x )
f ( x ) = arctan 2 + sin 2 x 1 − cos 2 x
Give Latex a try! You can start off with simply adding the Latex brackets around stuff, and then if it breaks to remove the brackets. For example, I added them to the first equation that you had :)
Log in to reply
sir, it is x-x^2/2...not x-x^2+2.....Also should i just write latex code into the answer box to use LATEX
Log in to reply
You can edit your solutions by clicking on the edit button at the bottom. Give it a try!
Note: I'm not very good at this problem, so my solution is somewhat long-winded.
Hopefully there are no mistakes.
f ( x ) = r = 1 ∑ ∞ r 1 ( − 1 ) r − 1 sin r x sin r x
f ′ ( x ) = r = 1 ∑ ∞ r 1 ( − 1 ) r − 1 ( r cos r x sin r x + r sin r − 1 x sin r x cos x )
= r = 1 ∑ ∞ ( − sin x ) r − 1 ( cos r x sin x + sin r x cos x )
= r = 1 ∑ ∞ ( − sin x ) r − 1 sin ( r + 1 ) x
Let z = C i s x , then
f ′ ( x ) = I m r = 1 ∑ ∞ ( − sin x ) r − 1 z r + 1
= I m r = 1 ∑ ∞ z 2 ( − z sin x ) r − 1
Since ∣ z sin x ∣ < 1 in this case,
f ′ ( x ) = I m 1 + z sin x z 2
= I m 1 + sin x cos x + i sin 2 x cos 2 x + i sin 2 x
= I m 1 + 2 1 sin 2 x + i sin 2 x ( cos 2 x + i sin 2 x ) 1 + 2 1 sin 2 x − i sin 2 x 1 + 2 1 sin 2 x − i sin 2 x
= 1 + sin 2 x + 4 1 sin 2 2 x + sin 4 x − cos 2 x sin 2 x + sin 2 x + 2 1 sin 2 2 x
Note that sin 4 x = sin 2 x ( 1 − cos 2 x ) = sin 2 x − 4 1 sin 2 2 x
and − cos 2 x sin 2 x = − ( 2 cos 2 x − 1 ) sin 2 x = − 2 1 sin 2 2 x + sin 2 x
Hence,
f ′ ( x ) = 1 + sin 2 x + sin 2 x sin 2 x + sin 2 x = 1 − 1 + sin 2 x + sin 2 x 1
f ( 1 2 π ) − f ( 0 ) = ∫ 0 1 2 π 1 − 1 + sin 2 x + sin 2 x d x
Since f ( 0 ) = 0 ,
f ( 1 2 π ) = 1 2 π + ∫ 0 1 2 π 1 + sin 2 x + sin 2 x − d x
∫ 0 1 2 π 1 + sin 2 x + sin 2 x − d x = ∫ 0 1 2 π 1 + 2 sin x cos x + sin 2 x − d x
= ∫ 0 1 2 π csc 2 x + 2 cot x + 1 − csc 2 x d x
Let u = cot x + 1 , then d u = − csc 2 x d x
and u 2 = cot x + 2 cot x + 1 = csc 2 x + 2 cot x
The integral now becomes ∫ ∞ 3 + 3 1 + u 2 d u = tan − 1 [ x ] ∞ 3 + 3
= tan − 1 ( 3 + 3 ) − 2 π
Note that tan − 1 x + c o t − 1 x = 2 π for x > 0 ,
Hence the value of the definite integral is
− cot − 1 ( 3 + 3 ) = − tan − 1 ( 3 + 3 1 ) = − tan − 1 ( 6 3 − 3 )
Finally,
f ( 1 2 π ) = 1 2 π − tan − 1 ( 6 3 − 3 )
c a − b = tan ( 1 2 π − tan − 1 ( 6 3 − 3 ) )
Solving, we obtain c a − b = 5 2 − 3 ,
Answer : 2 + 3 + 5 = 1 0
Nice approach...its consist so many topics a c o n c e p t u a l Q U E S T I O N
Lengthy to approach
Problem Loading...
Note Loading...
Set Loading...
this is hard to write.(sry bcoz i dunno latex)
1) l o g ( 1 + x ) = x − x 2 + 2 + x 3 / 3 . . . . . . . . . .
2)sin(rx) = e^(irx)-e^(-irx) /2i
3)sub .into eqn
4)therefore
2if(x) = (sigma)(1 to inf ) [ { (-1)^(r+1) (e^ix sinx)^r }/r }- {(-1)^(r+1) (e^(-ix) sinx)^r }/r}
from (1)
2if(x) = log(1+e^(ix)sinx ) - log(e^(-ix) sinx) = log[ (1+e^(ix)sinx ) /(1+e^(-ix)sinx ) ]
2if = log[ (cosxsinx +1 + isinxsinx )/(cosxsinx +1 - isinxsinx ) ]
2if= log[e^2iarg(cosxsinx +1 + isinxsinx ) ]....( bcoz it is (Ae^ik/Ae^-ik=e^i2k , k is arg)
hence
f=arg(cosxsinx +1 + isinxsinx )
f=arctan (1-cos2x / 2+sin2x) ..put double angle formula
put x=pi/12 and u get a=2,b=3,c=5 .....ANS=2+3+5