A nice Trignometric Series

Calculus Level 3

Let

f ( x ) = sin 2 x 1 2 sin 2 x × sin 2 x + 1 3 sin 3 x × sin 3 x f(x) = \sin^{2} x - \frac{1}{2} \sin2x \times \sin^{2}x + \frac{1}{3} \sin3x \times \sin^{3}x - \ldots

Then f ( π 12 ) \displaystyle f \left( \frac{\pi}{12} \right) can be written as

tan 1 ( a b c ) \tan^{-1} \left( \dfrac{ a - \sqrt{b}}{c} \right)

where b b is square free & a , b , c N a,b,c \in\mathbb N . Find the value of a + b + c a+b+c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Incredible Mind
Jan 9, 2015

this is hard to write.(sry bcoz i dunno latex)

1) l o g ( 1 + x ) = x x 2 + 2 + x 3 / 3.......... log (1+x) = x - x^2+2 + x^3/3 ..........

2)sin(rx) = e^(irx)-e^(-irx) /2i

3)sub .into eqn

4)therefore

2if(x) = (sigma)(1 to inf ) [ { (-1)^(r+1) (e^ix sinx)^r }/r }- {(-1)^(r+1) (e^(-ix) sinx)^r }/r}

from (1)

2if(x) = log(1+e^(ix)sinx ) - log(e^(-ix) sinx) = log[ (1+e^(ix)sinx ) /(1+e^(-ix)sinx ) ]

2if = log[ (cosxsinx +1 + isinxsinx )/(cosxsinx +1 - isinxsinx ) ]

2if= log[e^2iarg(cosxsinx +1 + isinxsinx ) ]....( bcoz it is (Ae^ik/Ae^-ik=e^i2k , k is arg)

hence

f=arg(cosxsinx +1 + isinxsinx )

f=arctan (1-cos2x / 2+sin2x) ..put double angle formula

put x=pi/12 and u get a=2,b=3,c=5 .....ANS=2+3+5

1) log ( 1 + x ) = x x 2 2 + x 3 3 + \log (1+x) = x - \frac{x^2}2 + \frac{x^3}3 +\cdots

2) sin ( r x ) = e i r x e i r x 2 i \sin(rx) = \dfrac{e^{irx}-e^{-irx}}{2i}

3) substitute into equation

4) therefore

2 i f ( x ) = r = 1 [ ( 1 ) r + 1 ( e i x sin x ) r r ( 1 ) r + 1 ( e i x sin x ) r r ] 2if(x) = \displaystyle \sum_{r=1}^\infty \left[ \frac{ (-1)^{r+1} (e^{ix} \sin x)^r }r - \frac{(-1)^{r+1} (e^{-ix} \sin x)^r }r \right]

from (1)

2 i f ( x ) = log ( 1 + e i x sin x ) log ( 1 + e i x sin x ) = log ( 1 + e i x sin x 1 + e i x sin x ) 2if(x) = \log(1+e^{ix}\sin x) - \log(1+e^{-ix}\sin x) = \log\left(\frac{1+e^{ix}\sin x}{1+e^{-ix}\sin x}\right)

2 i f ( x ) = log ( cos x sin x + 1 + i sin x sin x cos x sin x + 1 i sin x sin x ) 2if(x) = \log\left(\frac{\cos x\sin x+1+i\sin x\sin x}{\cos x\sin x+1-i\sin x\sin x}\right)

2 i f ( x ) = log [ e 2 i arg ( cos x sin x + 1 + i sin x sin x ) ] 2if(x) = \log[e^{2i\arg(\cos x\sin x +1 + i\sin x\sin x )} ] ....( bcoz it is A e i k / A e i k = e i 2 k Ae^{ik}/Ae^{-ik}=e^{i2k} , k is arg)

hence

f ( x ) = arg ( cos x sin x + 1 + i sin x sin x ) f(x)=\arg(\cos x\sin x +1 + i\sin x\sin x )

f ( x ) = arctan 1 cos 2 x 2 + sin 2 x f(x)=\arctan \dfrac{1-\cos2x}{2+\sin2x}

Kenny Lau - 5 years, 8 months ago

Log in to reply

Thanx for this

rit tak - 3 years, 4 months ago

Give Latex a try! You can start off with simply adding the Latex brackets around stuff, and then if it breaks to remove the brackets. For example, I added them to the first equation that you had :)

Calvin Lin Staff - 6 years, 5 months ago

Log in to reply

sir, it is x-x^2/2...not x-x^2+2.....Also should i just write latex code into the answer box to use LATEX

incredible mind - 6 years, 5 months ago

Log in to reply

You can edit your solutions by clicking on the edit button at the bottom. Give it a try!

Calvin Lin Staff - 6 years, 1 month ago
Wei Xian Lim
Jan 9, 2015

Note: I'm not very good at this problem, so my solution is somewhat long-winded.

\quad \quad \; Hopefully there are no mistakes.

f ( x ) = r = 1 1 r ( 1 ) r 1 sin r x sin r x f(x) = \sum\limits_{r=1}^\infty \frac{1}{r} (-1)^{r-1} \sin rx \sin^r x

f ( x ) = r = 1 1 r ( 1 ) r 1 ( r cos r x sin r x + r sin r 1 x sin r x cos x ) f'(x) = \sum\limits_{r=1}^\infty \frac{1}{r} (-1)^{r-1} (r \cos rx \sin^r x + r \sin^{r-1}x \sin rx \cos x)

= r = 1 ( sin x ) r 1 ( cos r x sin x + sin r x cos x ) \quad \quad \; \; = \sum\limits_{r=1}^\infty (-\sin x)^{r-1} (\cos rx \sin x + \sin rx \cos x)

= r = 1 ( sin x ) r 1 sin ( r + 1 ) x \quad \quad \; \; = \sum\limits_{r=1}^\infty (-\sin x)^{r-1} \sin (r+1)x

Let z = C i s x z = Cis x , then

f ( x ) = I m r = 1 ( sin x ) r 1 z r + 1 f'(x) = Im \sum\limits_{r=1}^\infty (-\sin x)^{r-1} z^{r+1}

= I m r = 1 z 2 ( z sin x ) r 1 \quad \quad \; \; = Im \sum\limits_{r=1}^\infty z^2 (-z \sin x)^{r-1}

Since z sin x < 1 |z\sin x|<1 in this case,

f ( x ) = I m z 2 1 + z sin x f'(x) = Im \frac {z^2}{1+z \sin x}

= I m cos 2 x + i sin 2 x 1 + sin x cos x + i sin 2 x \quad \quad \; \; = Im \frac{\cos 2x + i\sin 2x}{ 1+\sin x \cos x +i\sin^2 x}

= I m ( cos 2 x + i sin 2 x ) 1 + 1 2 sin 2 x + i sin 2 x 1 + 1 2 sin 2 x i sin 2 x 1 + 1 2 sin 2 x i sin 2 x \quad \quad \; \; = Im \frac{(\cos 2x + i\sin 2x)}{1+\frac{1}{2} \sin 2x +i\sin^2 x} \frac{1+\frac{1}{2} \sin 2x - i\sin^2 x}{1+\frac{1}{2} \sin 2x - i\sin^2 x}

= cos 2 x sin 2 x + sin 2 x + 1 2 sin 2 2 x 1 + sin 2 x + 1 4 sin 2 2 x + sin 4 x \quad \quad \; \; = \frac{-\cos 2x \sin^2 x + \sin 2x + \frac{1}{2} \sin^2 2x}{1 +\sin 2x + \frac{1}{4} \sin^2 2x + \sin^4 x}

Note that sin 4 x = sin 2 x ( 1 cos 2 x ) = sin 2 x 1 4 sin 2 2 x \sin^4 x = \sin^2 x(1-\cos^2 x) = \sin^2 x - \frac{1}{4} \sin^2 2x

\quad \quad \; and cos 2 x sin 2 x = ( 2 cos 2 x 1 ) sin 2 x = 1 2 sin 2 2 x + sin 2 x -\cos 2x \sin^2 x = -(2 \cos^2 x -1)\sin^2 x = -\frac{1}{2} \sin^2 2x + \sin^2 x

Hence,

f ( x ) = sin 2 x + sin 2 x 1 + sin 2 x + sin 2 x = 1 1 1 + sin 2 x + sin 2 x f'(x) = \frac{\sin 2x + \sin^2 x}{1+ \sin 2x + \sin^2 x} = 1 - \frac{1}{1+ \sin 2x + \sin^2 x}

f ( π 12 ) f ( 0 ) = 0 π 12 1 d x 1 + sin 2 x + sin 2 x f(\frac{\pi}{12})-f(0) = \int_{0}^{\frac{\pi}{12}} 1 - \frac{dx}{1+ \sin 2x + \sin^2 x}

Since f ( 0 ) = 0 f(0) = 0 ,

f ( π 12 ) = π 12 + 0 π 12 d x 1 + sin 2 x + sin 2 x f(\frac{\pi}{12}) = \frac{\pi}{12} + \int_{0}^{\frac{\pi}{12}} \frac{-dx}{1+ \sin 2x + \sin^2 x}

0 π 12 d x 1 + sin 2 x + sin 2 x = 0 π 12 d x 1 + 2 sin x cos x + sin 2 x \int_{0}^{\frac{\pi}{12}} \frac{-dx}{1+ \sin 2x + \sin^2 x} = \int_{0}^{\frac{\pi}{12}} \frac{-dx}{1+ 2\sin x \cos x + \sin^2 x}

= 0 π 12 csc 2 x d x csc 2 x + 2 cot x + 1 \quad \quad \quad \quad \quad \quad \quad \; = \int_{0}^{\frac{\pi}{12}} \frac{-\csc^2 x \ dx}{\csc^2 x+ 2\cot x + 1}

Let u = cot x + 1 u = \cot x + 1 , then d u = csc 2 x d x du = -\csc^2 x \ dx

\qquad \qquad \qquad \qquad and u 2 = cot x + 2 cot x + 1 = csc 2 x + 2 cot x u^2 = \cot x + 2\cot x + 1 = \csc^2 x + 2\cot x

The integral now becomes 3 + 3 d u 1 + u 2 = tan 1 [ x ] 3 + 3 \int_{\infty}^{3+\sqrt 3} \frac{du}{1+u^2} = \tan^{-1} [x]_{\infty}^{3+\sqrt 3}

= tan 1 ( 3 + 3 ) π 2 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad = \tan^{-1}(3+\sqrt 3) - \frac{\pi}{2}

Note that tan 1 x + c o t 1 x = π 2 \tan^{-1}x + cot^{-1}x = \frac{\pi}{2} for x > 0 x>0 ,

Hence the value of the definite integral is

cot 1 ( 3 + 3 ) = tan 1 ( 1 3 + 3 ) = tan 1 ( 3 3 6 ) -\cot^{-1}(3+\sqrt 3) = -\tan^{-1} (\frac{1}{3+\sqrt 3}) = -\tan^{-1} (\frac{3- \sqrt 3}{6})

Finally,

f ( π 12 ) = π 12 tan 1 ( 3 3 6 ) f(\frac{\pi}{12}) = \frac{\pi}{12} -\tan^{-1} (\frac{3- \sqrt 3}{6})

a b c = tan ( π 12 tan 1 ( 3 3 6 ) ) \frac {a- \sqrt b}{c} = \tan( \frac{\pi}{12} -\tan^{-1} (\frac{3- \sqrt 3}{6}) )

Solving, we obtain a b c = 2 3 5 \frac {a- \sqrt b}{c} = \frac {2- \sqrt 3}{5} ,

Answer : 2 + 3 + 5 = 10 : 2+3+5 = \boxed{10}

Nice approach...its consist so many topics a c o n c e p t u a l Q U E S T I O N a conceptual QUESTION

harsh soni - 6 years, 3 months ago

Lengthy to approach

Supratim Santra - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...