A Trigo Sum

Geometry Level 3

If cos x + sin x = c \cos x + \sin x = c , find sin x cos x \sin x - \cos x .

± 1 c 2 \pm \sqrt{1-c^2} c c ± c \pm c c \sqrt{c} ± c \pm \sqrt{c} ± 2 c 2 \pm \sqrt{2-c^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 21, 2016

cos x + sin x = c Squaring both sides cos 2 x + 2 sin x cos x + sin 2 x = c 2 1 + 2 sin x cos x = c 2 2 sin x cos x = c 2 1 \begin{aligned} \cos x + \sin x & = c & \small \color{#3D99F6}{\text{Squaring both sides}} \\ \cos^2 x + 2 \sin x \cos x + \sin^2 x & = c^2 \\ 1 + 2 \sin x \cos x & = c^2 \\ \implies 2 \sin x \cos x & = c^2 - 1 \end{aligned}

Now, we have:

( sin x cos x ) 2 = sin 2 x 2 sin x cos x + cos 2 x = 1 ( c 2 1 ) sin x cos x = ± 2 c 2 \begin{aligned} (\sin x - \cos x)^2 & = \sin^2 x - 2 \sin x \cos x + \cos^2 x \\ & = 1 - (c^2 - 1) \\ \implies \sin x - \cos x & = \boxed{\pm \sqrt{2-c^2}} \end{aligned}

what about the negative solution?

Milton Shimabukuro - 4 years, 10 months ago

It should be ± 2 c 2 \pm \sqrt{ 2 - c^2 } right?

Calvin Lin Staff - 4 years, 10 months ago

For x = pi/4, c=sqrt(2). The difference being null, only 6) can be the good answer

Md Zuhair
Jul 20, 2016

Squaring we get c o s 2 x + s i n 2 x + 2 c o x s i n x = c 2 cos^2x+ sin^2x +2 coxsinx= c^2 ... 1 s i n 2 x + 1 c o s 2 x + 2 c o s x s i n x = c 2 1-sin^2x+1-cos^2x+2cosx sinx =c^2 ... that is 2 c 2 = ( s i n x c o s x ) 2 2-c^2 = (sinx - cosx)^2 that is ( 2 c 2 ) = s i n x c o s x \sqrt(2-c^2) = |sinx -cosx|

@Md Zuhair , you need to learn up LaTex, so that members will do you problem. You can use Toggle LaTex on the top right pull-down menu to see the LaTex codes. You can also put your mouse cursor over the formulas to see the code. I have changed the problem phrasing for you.

Chew-Seong Cheong - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...