A Trigonometric Inequality

Geometry Level 3

In Δ A B C \Delta ABC find the 'Minimum' value of,

C o t 2 Cot ^{ 2 } A { A } + C o t 2 Cot ^{ 2 } B { B } + C o t 2 Cot ^{ 2 } C { C }

This question is part of the set Best of Me


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Dec 1, 2016

Another method, albeit more rigorous, is to use LaGrange Multipliers. Let f ( A , B , C ) = c o t 2 ( A ) + c o t 2 ( B ) + c o t 2 ( C ) f(A,B,C) = cot^2(A) + cot^2(B) + cot^2(C) and g ( A , B , C ) = A + B + C = π g(A,B,C) = A + B + C = \pi . Taking f = λ g \nabla f = \lambda \cdot \nabla g yields:

λ = 2 c o t ( A ) c s c 2 ( A ) ; \lambda = -2cot(A)csc^2(A);

λ = 2 c o t ( B ) c s c 2 ( B ) ; \lambda = -2cot(B)csc^2(B);

λ = 2 c o t ( C ) c s c 2 ( C ) ; \lambda = -2cot(C)csc^2(C);

which equality holds if and only if A = B = C = π 3 . A = B = C = \frac{\pi}{3}. (i.e. an equilateral triangle). Next, we calculate the 3 × 3 3 \times 3 symmetric Hessian matrix of f ( A , B , C ) F ( A , B , C ) : f(A,B,C) \Rightarrow F(A,B,C):

F = [ 2 c s c 4 ( A ) + 4 c o t 2 ( A ) c s c 2 ( A ) 0 0 0 2 c s c 2 ( B ) + 4 c o t 2 ( B ) c s c 2 ( B ) 0 0 0 2 c s c 4 ( C ) + 4 c o t 2 ( C ) c s c 2 ( C ) ] F = \begin{bmatrix}{2csc^4(A) + 4cot^2(A)csc^2(A)} && {0} && {0} \\ {0} && {2csc^2(B) + 4cot^2(B)csc^2(B)} && {0} \\ {0} && {0} && {2csc^4(C) + 4cot^2(C)csc^2(C)}\end{bmatrix}

and which F ( π 3 , π 3 , π 3 ) = 48 9 I 3 F(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}) = \frac{48}{9} \cdot I_3 (where I 3 I_3 is the 3 × 3 3 \times 3 identity matrix) is positive-definite \Rightarrow f ( A , B , C ) f(A,B,C) is globally minimized at ( π 3 , π 3 , π 3 ) \frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}) , or f ( π 3 , π 3 , π 3 ) = 3 c o t 2 ( π 3 ) = 3 ( 1 3 ) 2 = 1 . f(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}) = 3 \cdot cot^2(\frac{\pi}{3}) = 3 \cdot (\frac{1}{\sqrt3})^2 = \boxed{1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...