A troublesome recurrence

Algebra Level pending

Given that n N + \forall n \in \mathbb N^+ , x 1 = 2 x_1 = 2 and i = 1 n 1 x n 2 x i x i + 1 = 2 ( x n 2 x 1 2 x 2 2 x 1 2 ) \displaystyle \sum_{i=1}^{n-1} \dfrac{x_n^2}{x_{i}x_{i+1}}=2 \left(\dfrac{x_n^2-x_1^2}{x_2^2-x_1^2}\right) for n 2 n \ge 2 , find the value of x 10 x_{10} .


The answer is 1024.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 24, 2020

From the first few x n x_n , it appears that x n = 2 n x_n = 2^n . Let us prove the claim by induction that the claim is true for all n 1 n \ge 1 . We note that the claim is true for n = 1 n=1 and n = 2 n=2 . Assuming the it is true for n n . Then

k = 1 n x n + 1 2 x k x k + 1 = 2 ( x n + 1 2 x 1 2 x 2 2 x 1 2 ) x n + 1 2 x n 2 k = 1 n 1 x n 2 x k x k + 1 + x n + 1 x n = x n + 1 2 4 6 x n + 1 2 x n 2 x n 2 4 6 + x n + 1 x n = x n + 1 2 4 6 x n + 1 2 x n 2 4 x n + 1 2 + 6 x n + 1 x n = x n + 1 2 x n 2 4 x n 2 2 x n + 1 2 3 x n + 1 x n 2 x n 2 = 0 ( 2 x n + 1 + x n ) ( x n + 1 2 x n ) = 0 Since x n + 1 N x n + 1 = 2 x n = 2 n + 1 \begin{aligned} \sum_{k=1}^n \frac {x_{n+1}^2}{x_kx_{k+1}} & = 2 \left(\frac {x_{n+1}^2-x_1^2}{x_2^2 - x_1^2}\right) \\ \frac {x_{n+1}^2}{x_n^2} \sum_{k=1}^{n-1} \frac {x_n^2}{x_kx_{k+1}} + \frac {x_{n+1}}{x_n} & = \frac {x_{n+1}^2 - 4}6 \\ \frac {x_{n+1}^2}{x_n^2} \cdot \frac {x_n^2 - 4}6+ \frac {x_{n+1}}{x_n} & = \frac {x_{n+1}^2 - 4}6 \\ x_{n+1}^2 x_n^2 - 4 x_{n+1}^2 + 6 x_{n+1} x_n & = x_{n+1}^2 x_n^2 - 4 x_n^2 \\ 2 x_{n+1}^2 - 3 x_{n+1} x_n - 2 x_n^2 & = 0 \\ \left(2x_{n+1} + x_n \right) \left(x_{n+1} - 2 x_n \right) & = 0 & \small \blue{\text{Since }x_{n+1} \in \mathbb N} \\ \implies x_{n+1} & = 2x_n = 2^{n+1} \end{aligned}

Therefore the claim is true for n + 1 n+1 and hence true for all n 1 n \ge 1 and x 10 = 2 10 = 1024 x_{10} = 2^{10} = \boxed{1024} .

David Vreken
May 24, 2020

It can be proved inductively that x n = 2 n x_n = 2^n :

The first case n = 2 n = 2 is true because i = 1 2 1 x 2 2 x i x i + 1 = ( 2 2 ) 2 2 1 2 2 = 2 = 2 x 2 2 x 1 2 x 2 2 x 1 2 \displaystyle \sum_{i=1}^{2 - 1} \frac{x_2^2}{x_ix_{i + 1}} = \frac{(2^2)^2}{2^1 \cdot 2^2} = 2 = 2 \frac{x_2^2 - x_1^2}{x_2^2 - x_1^2} .

Then assuming the sum for n n is true, the sum for n + 1 n + 1 is also true because:

i = 1 ( n + 1 ) 1 x n + 1 2 x i x i + 1 \displaystyle \sum_{i=1}^{(n + 1) - 1} \frac{x_{n + 1}^2}{x_ix_{i + 1}}

= ( 2 n + 1 ) 2 2 1 2 2 + ( 2 n + 1 ) 2 2 2 2 3 + . . . + ( 2 n + 1 ) 2 2 n 2 n + 1 \displaystyle = \frac{(2^{n + 1})^2}{2^1 \cdot 2^2} + \frac{(2^{n + 1})^2}{2^2 \cdot 2^3} + ... + \frac{(2^{n + 1})^2}{2^n \cdot 2^{n + 1}}

= ( 2 n + 1 ) 2 2 2 n + 1 ( 2 2 n 2 + 2 2 n 4 + . . . + 1 ) \displaystyle = \frac{(2^{n + 1})^2}{2^{2n + 1}}(2^{2n - 2} + 2^{2n - 4} + ... + 1)

= 2 ( 2 2 n 1 2 2 1 ) \displaystyle = 2\bigg(\frac{2^{2n} - 1}{2^2 - 1}\bigg)

= 2 3 ( 2 2 n 1 ) \displaystyle = \frac{2}{3}(2^{2n} - 1)

= 2 3 4 ( 2 2 n 1 ) 4 \displaystyle = \frac{2}{3} \cdot \frac{4(2^{2n} - 1)}{4}

= 2 ( 2 n + 1 ) 2 4 ( 2 2 ) 2 ( 2 1 ) 2 \displaystyle = 2 \cdot \frac{(2^{n + 1})^2 - 4}{(2^2)^2 - (2^1)^2}

= 2 x n + 1 2 4 x 2 2 x 1 2 \displaystyle = 2 \cdot \frac{x_{n + 1}^2 - 4}{x_2^2 - x_1^2}

which completes the inductive proof.

Therefore, x 10 = 2 10 = 1024 x_{10} = 2^{10} = \boxed{1024} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...