A twist on my last problem?

Algebra Level 3

Given that C = ω 1 + ω 1 + ω 3 + ω 5 + + ω 2013 C= \omega^{-1} + \omega^1 + \omega^3 + \omega^5 + \cdots + \omega^{2013} , where ω \omega is the 2016th root of unity (other than 1 or 1 -1 ), find the exact value of C C .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Hobart Pao
Jun 8, 2017

We can rewrite C C as

= k = 0 1007 ω 2 k 1 = \displaystyle \sum_{k=0}^{1007} \omega^{2k-1}

We can multiply the numerator and denominator by ω \omega .

= 1 ω k = 0 1007 ω 2 k = \dfrac{1}{\omega} \displaystyle \sum_{k=0}^{1007} \omega^{2k}

We can see that the sum is a finite geometric progression with a common ratio ω 2 \omega^2 and 1008 1008 terms.

= 1 ( ω 2 ) 1008 ω ( 1 ω 2 ) = \dfrac{1-(\omega^2)^{1008} }{ \omega(1-\omega^2)}

Since ω = cos 2 π 2016 + i sin 2 π 2016 \omega = \cos \dfrac{2\pi }{2016} + i \sin \dfrac{2\pi}{2016} , ( ω 2 ) 1008 = ω 2016 = cos 2 π + i sin 2 π = 1 (\omega^2)^{1008} = \omega^{2016} = \cos 2 \pi + i \sin 2 \pi = 1 , then the numerator of the sum is 0 0 , and the sum equals 0 \boxed{0} .

You need to specify that ω \omega is a 2016th root of unity other than 1 or 1 -1 .

Jon Haussmann - 4 years ago

Log in to reply

THanks, done

Hobart Pao - 4 years ago
Steven Chase
Jun 8, 2017

In the last problem (see that problem for the proof), we established that:

1 + ω 2 + ω 4 + . . . . ω 2014 = 0 \large{1 + \omega^2 + \omega^4 + .... \omega^{2014} = 0 }

So then a transformation gives the following:

ω ( ω 1 + ω 1 + ω 3 + . . . . ω 2013 ) = 1 + ω 2 + ω 4 + . . . . ω 2014 = 0 ω 0 ω 1 + ω 1 + ω 3 + . . . . ω 2013 = 0 \large{\omega( \omega^{-1} + \omega^1 + \omega^3 + .... \omega^{2013}) = 1 + \omega^2 + \omega^4 + .... \omega^{2014} = 0 \\ \omega \neq 0 \implies \omega^{-1} + \omega^1 + \omega^3 + .... \omega^{2013} = 0}

Chew-Seong Cheong
Sep 20, 2019

Note that ω 2016 = 1 \omega^{2016} = 1 . ω 2016 k = ω k \implies \omega^{2016-k} = \omega^{-k} and ω 2015 = ω 1 \omega^{2015} = \omega^{-1} . Therefore,

C = k = 0 1007 ω 2 k + 1 Since ω 2016 k = ω k = k = 0 503 ( ω 2 k + 1 + ω ( 2 k + 1 ) ) and ω = e π 1008 i = k = 0 503 ( e 2 k + 1 1008 π i + e 2 k + 1 1008 π i ) Note that cos θ = e i θ + e i θ 2 = 2 k = 0 503 cos ( 2 k + 1 1008 π ) = 2 ( k = 0 251 cos ( 2 k + 1 1008 π ) + k = 252 503 cos ( 2 k + 1 1008 π ) ) and cos ( π θ ) = cos θ = 2 ( k = 0 251 cos ( 2 k + 1 1008 π ) k = 252 503 cos ( 1008 ( 2 k + 1 ) 1008 π ) ) = 2 ( k = 0 251 cos ( 2 k + 1 1008 π ) k = 0 251 cos ( 2 k + 1 1008 π ) ) = 0 \begin{aligned} C & = \sum_{k=0}^{1007} \omega^{2k+1} & \small \color{#3D99F6} \text{Since } \omega^{2016-k} = \omega^{-k} \\ & = \sum_{k=0}^{503} \left(\omega^{2k+1} + \omega^{-(2k+1)} \right) & \small \color{#3D99F6} \text{and } \omega = e^{\frac \pi{1008}i} \\ & = \sum_{k=0}^{503} \left(e^{\frac {2k+1}{1008}\pi i} + e^{-\frac {2k+1}{1008}\pi i} \right) & \small \color{#3D99F6} \text{Note that } \cos \theta = \frac {e^{i\theta} + e^{-i\theta}}2 \\ & = 2 \sum_{k=0}^{503} \cos \left(\frac {2k+1}{1008}\pi \right) \\ & = 2 \left(\sum_{k=0}^{251} \cos \left(\frac {2k+1}{1008}\pi \right) + \color{#3D99F6} \sum_{k=252}^{503} \cos \left(\frac {2k+1}{1008}\pi \right) \right) & \small \color{#3D99F6} \text{and } \cos (\pi - \theta) = - \cos \theta \\ & = 2 \left(\sum_{k=0}^{251} \cos \left(\frac {2k+1}{1008}\pi \right) \color{#3D99F6} - \sum_{k=252}^{503} \cos \left(\frac {1008-(2k+1)}{1008}\pi \right) \right) \\ & = 2 \left(\sum_{k=0}^{251} \cos \left(\frac {2k+1}{1008}\pi \right) \color{#3D99F6} - \sum_{k=0}^{251} \cos \left(\frac {2k+1}{1008}\pi \right) \right) \\ & = \boxed 0 \end{aligned}

Kelvin Hong
Jun 9, 2017

ω 2016 1 = 0 \omega^{2016}-1=0

1 + ω + ω 2 + ω 3 + . . . + ω 2015 = 0 , ( ω 1 0 ) 1+\omega+\omega^2+\omega^3+... +\omega^{2015}=0 , ( \omega -1\neq 0)

C ω + C ω 2 = 0 C\omega+C\omega^2 =0

C ( ω + ω 2 ) = 0 C(\omega+\omega^2)=0

C = 0 , ( ω + ω 2 0 ) C=\boxed{0} , (\omega+\omega^2 \neq 0)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...