A Typical Area

Calculus Level 3

Two curves C ( f ( x ) ) 1 3 + ( f ( y ) ) 2 3 = 0 \equiv { \left( f\left( x \right) \right) }^{ \frac { 1 }{ 3 } }+{ \left( f\left( y \right) \right) }^{ \frac { 2 }{ 3 } }=0 and

S ( f ( x ) ) 2 3 + ( f ( y ) ) 2 3 = 12 \equiv { \left( f\left( x \right) \right) }^{ \frac { 2 }{ 3 } }+{ \left( f\left( y \right) \right) }^{ \frac { 2 }{ 3 } }=12 ,

satisfying the relation ( x y ) f ( x + y ) ( x + y ) f ( x y ) = 4 x y ( x 2 y 2 ) { \left( { x }-{ y } \right) }{ f\left( x+y \right) }-{ \left( { x }+{ y } \right) }{ f\left( x-y \right) }={ { 4 }{ x }{ y } }{ \left( { x }^{ 2 }-{ y }^{ 2 } \right) } . where f(1)=1

Let A represent area between the curves C and S and A can be expressed as p π + q { p }{ \pi }+\sqrt { q }
Then find the value of p+q+ A \left\lfloor A \right\rfloor .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...