A typical limit

Calculus Level 3

lim x 0 x n sin n x x 2 sin n x = 369 \lim_{x \to 0 }\frac{x^n-\sin^n x}{x^2\sin^n x}=369

If the limit above holds true, find the value of n n .


The answer is 2214.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First of all note that the denominator can be replaced with just x n + 2 \large x^{n+2} because lim x 0 sin ( x ) x = 1 \displaystyle \lim_{x\to 0} \frac{\sin(x)}{x} =1 .

We shall use the taylor series expansion for sin ( x ) = x x 3 3 ! + x 5 5 ! + . . . . . . . \displaystyle \sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} +.......

So we have to evaluate:-

lim x 0 x n ( x x 3 3 ! + x 5 5 ! + . . . . . . . ) n x n + 2 \displaystyle \lim_{x\to 0} \frac{x^{n} - \left(x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} +.......\right)^{n}}{x^{n+2}}

Taking x n \large x^{n} common from numerator and denominator we have:-

lim x 0 1 ( 1 x 2 3 ! + x 4 5 ! + . . . . . . . ) n x 2 \displaystyle \lim_{x\to 0}\frac{1 - \left(1 - \frac{x^{2}}{3!} + \frac{x^{4}}{5!} +.......\right)^{n}}{x^{2}}

Now expanding ( 1 x 2 3 ! + x 4 5 ! + . . . . . . . ) n \left(1 - \frac{x^{2}}{3!} + \frac{x^{4}}{5!} +.......\right)^{n} binomially we have :-

lim x 0 1 1 + n ( x 2 3 ! + x 4 5 ! + . . . . ) + O ( x 4 ) x 2 \displaystyle \lim_{x\to 0}\frac{1 - 1 +n\left(\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+....\right) + O(x^4)}{x^{2}}

So we have :-

n 3 ! = 369 \displaystyle \frac{n}{3!} = 369

So n = 2214 \displaystyle n=2214

Here O ( . ) O(.) denotes the big O notation .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...