A Typical Recurrence Relation

Calculus Level 4

Consider the sum, S = n = 0 a n 5 2 n S = \sum _{n = 0} ^{\infty} \frac{a_n}{5^{2n}}

where a n a_n is a sequence defined by recurrence relation

a n + 2 = 2 a n + 1 + a n n Z a_{n+2} = 2a_{n+1} + a_n \quad \forall \, n \in \mathbb Z^*

and a 0 = a 1 = 1 a_0 = a_1 = 1 . If S = p q S = \dfrac{p}{q} , then find p + q p+q .


The answer is 587.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 18, 2016

From the recurrence relation a n + 2 = 2 a n + 1 + a n a_{n+2} = 2a_{n+1} + a_n , we have the characteristic equation x 2 2 x 1 = 0 x^2 - 2x - 1 = 0 and x = 1 ± 2 x = 1 \pm \sqrt{2} . Therefore, we have:

a n = c 1 ( 1 + 2 ) n + c 2 ( 1 2 ) n a 0 = 1 : 1 = c 1 + c 2 a 1 = 1 : 1 = c 1 ( 1 + 2 ) + c 2 ( 1 2 ) 1 = c 1 + c 2 + 2 ( c 1 c 2 ) 1 = 1 + 2 ( c 1 c 2 ) c 1 c 2 = 0 c 1 = c 2 = 1 2 a n = ( 1 + 2 ) n + ( 1 2 ) n 2 \begin{aligned} a_n & = c_1(1+\sqrt{2})^n + c_2(1-\sqrt{2})^n \\ a_0 = 1: \quad 1 & = c_1 + c_2 \\ a_1 = 1: \quad 1 & = c_1(1+\sqrt{2}) + c_2(1-\sqrt{2}) \\ 1 & = c_1 + c_2 + \sqrt{2}(c_1-c_2) \\ 1 & = 1 + \sqrt{2}(c_1-c_2) \\ \Rightarrow c_1 - c_2 & = 0 \\ c_1 = c_2 & = \frac{1}{2} \\ \Rightarrow a_n & = \frac{(1+\sqrt{2})^n + (1-\sqrt{2})^n}{2} \end{aligned}

Now we have:

S = n = 0 a n 5 2 n = 1 2 ( n = 0 ( 1 + 2 25 ) n + n = 0 ( 1 2 25 ) n ) = 1 2 ( 1 1 1 + 2 25 + 1 1 1 2 25 ) = 1 2 ( 25 24 2 + 25 24 + 2 ) = 1 2 ( 2 25 24 2 4 2 2 ) = 300 287 \begin{aligned} S & = \sum_{n=0}^\infty \frac{a_n}{5^{2n}} \\ & = \frac{1}{2} \left(\sum_{n=0}^\infty \left(\frac{1+\sqrt{2}}{25}\right)^n + \sum_{n=0}^\infty \left(\frac{1-\sqrt{2}}{25}\right)^n \right) \\ & = \frac{1}{2} \left( \frac{1}{1 - \frac{1+\sqrt{2}}{25}} + \frac{1}{1 - \frac{1-\sqrt{2}}{25}} \right) \\ & = \frac{1}{2} \left( \frac{25}{24-\sqrt{2}} +\frac{25}{24+\sqrt{2}} \right) \\ & = \frac{1}{2} \left( \frac{2 \cdot{} 25 \cdot{} 24}{24^2 - 2} \right) \\ & = \frac{300}{287} \end{aligned}

p + q = 300 + 287 = 587 \Rightarrow p+q = 300 + 287 = \boxed{587}

Moderator note:

Good use of solving the recurrence relation to find the summation.

Exactly same solution!

Aditya Kumar - 5 years, 1 month ago
Aditya Dhawan
Apr 24, 2016

S = 1 25 0 + 1 25 1 + 3 25 2 + 7 25 3 + 17 25 4 + 41 25 5 + 99 25 6 . . . . . . S 25 2 = 1 25 2 + 1 25 3 + 3 25 4 + 7 25 5 + 17 25 6 + 41 25 7 + 99 25 8 . . . . . . 624 S 625 = 1 25 0 + 1 25 1 + 2 ( 1 25 2 + 3 25 3 + 7 25 4 + 17 25 5 + 41 25 6 . . . . . . ) 624 S 625 = 1 25 0 + 1 25 1 + 2 25 ( 1 25 1 + 3 25 2 + 7 25 3 + 17 25 4 + 41 25 5 . . . . . . . ) 624 S 625 = 1 25 0 + 1 25 1 + 2 25 ( S 1 ) 574 S = 600 S = 300 287 = P Q P + Q = 587 \quad S=\frac { 1 }{ { 25 }^{ 0 } } +\frac { 1 }{ { 25 }^{ 1 } } +\frac { 3 }{ { 25 }^{ 2 } } +\frac { 7 }{ { 25 }^{ 3 } } +\frac { { 17 } }{ { 25 }^{ 4 } } +\frac { 41 }{ { 25 }^{ 5 } } +\frac { 99 }{ { 25 }^{ 6 } } ......\\ \\ \frac { S }{ { 25 }^{ 2 } } =\frac { 1 }{ { 25 }^{ 2 } } +\frac { 1 }{ { 25 }^{ 3 } } +\frac { 3 }{ { 25 }^{ 4 } } +\frac { 7 }{ { 25 }^{ 5 } } +\frac { { 17 } }{ { 25 }^{ 6 } } +\frac { 41 }{ { 25 }^{ 7 } } +\frac { 99 }{ { 25 }^{ 8 } } ......\\ \\ \therefore \frac { 624S }{ 625 } =\frac { 1 }{ { 25 }^{ 0 } } +\frac { 1 }{ { 25 }^{ 1 } } +2\left( \frac { 1 }{ { 25 }^{ 2 } } +\frac { 3 }{ { 25 }^{ 3 } } +\frac { 7 }{ { 25 }^{ 4 } } +\frac { 17 }{ { 25 }^{ 5 } } +\frac { { 41 } }{ { 25 }^{ 6 } } ...... \right) \\ \\ \Rightarrow \therefore \frac { 624S }{ 625 } =\frac { 1 }{ { 25 }^{ 0 } } +\frac { 1 }{ { 25 }^{ 1 } } +\frac { 2 }{ 25 } \left( \frac { 1 }{ { 25 }^{ 1 } } +\frac { 3 }{ { 25 }^{ 2 } } +\frac { 7 }{ { 25 }^{ 3 } } +\frac { 17 }{ { 25 }^{ 4 } } +\frac { { 41 } }{ { 25 }^{ 5 } } ....... \right) \\ \\ \Rightarrow \frac { 624S }{ 625 } =\frac { 1 }{ { 25 }^{ 0 } } +\frac { 1 }{ { 25 }^{ 1 } } +\frac { 2 }{ 25 } \left( S-1 \right) \\ \\ \Rightarrow 574S=600\\ \\ \Rightarrow S=\frac { 300 }{ 287 } =\frac { P }{ Q } \\ \\ \therefore \quad \boxed { P+Q=587 } \\ \\

Moderator note:

Good solution using the ideas of a geometric progression summation.

but how you found the sequence please add it

anshu garg - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...