Consider the sum, S = n = 0 ∑ ∞ 5 2 n a n
where a n is a sequence defined by recurrence relation
a n + 2 = 2 a n + 1 + a n ∀ n ∈ Z ∗
and a 0 = a 1 = 1 . If S = q p , then find p + q .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good use of solving the recurrence relation to find the summation.
Exactly same solution!
S = 2 5 0 1 + 2 5 1 1 + 2 5 2 3 + 2 5 3 7 + 2 5 4 1 7 + 2 5 5 4 1 + 2 5 6 9 9 . . . . . . 2 5 2 S = 2 5 2 1 + 2 5 3 1 + 2 5 4 3 + 2 5 5 7 + 2 5 6 1 7 + 2 5 7 4 1 + 2 5 8 9 9 . . . . . . ∴ 6 2 5 6 2 4 S = 2 5 0 1 + 2 5 1 1 + 2 ( 2 5 2 1 + 2 5 3 3 + 2 5 4 7 + 2 5 5 1 7 + 2 5 6 4 1 . . . . . . ) ⇒ ∴ 6 2 5 6 2 4 S = 2 5 0 1 + 2 5 1 1 + 2 5 2 ( 2 5 1 1 + 2 5 2 3 + 2 5 3 7 + 2 5 4 1 7 + 2 5 5 4 1 . . . . . . . ) ⇒ 6 2 5 6 2 4 S = 2 5 0 1 + 2 5 1 1 + 2 5 2 ( S − 1 ) ⇒ 5 7 4 S = 6 0 0 ⇒ S = 2 8 7 3 0 0 = Q P ∴ P + Q = 5 8 7
Good solution using the ideas of a geometric progression summation.
but how you found the sequence please add it
Problem Loading...
Note Loading...
Set Loading...
From the recurrence relation a n + 2 = 2 a n + 1 + a n , we have the characteristic equation x 2 − 2 x − 1 = 0 and x = 1 ± 2 . Therefore, we have:
a n a 0 = 1 : 1 a 1 = 1 : 1 1 1 ⇒ c 1 − c 2 c 1 = c 2 ⇒ a n = c 1 ( 1 + 2 ) n + c 2 ( 1 − 2 ) n = c 1 + c 2 = c 1 ( 1 + 2 ) + c 2 ( 1 − 2 ) = c 1 + c 2 + 2 ( c 1 − c 2 ) = 1 + 2 ( c 1 − c 2 ) = 0 = 2 1 = 2 ( 1 + 2 ) n + ( 1 − 2 ) n
Now we have:
S = n = 0 ∑ ∞ 5 2 n a n = 2 1 ( n = 0 ∑ ∞ ( 2 5 1 + 2 ) n + n = 0 ∑ ∞ ( 2 5 1 − 2 ) n ) = 2 1 ( 1 − 2 5 1 + 2 1 + 1 − 2 5 1 − 2 1 ) = 2 1 ( 2 4 − 2 2 5 + 2 4 + 2 2 5 ) = 2 1 ( 2 4 2 − 2 2 ⋅ 2 5 ⋅ 2 4 ) = 2 8 7 3 0 0
⇒ p + q = 3 0 0 + 2 8 7 = 5 8 7