A variant of 2003 CMO Problem 3

Algebra Level 3

Given the function f ( x ) = 1 1 + x + 1 1 + a + a x a x + 8 f(x)=\dfrac{1}{\sqrt{1+x}}+\dfrac{1}{\sqrt{1+a}}+\sqrt{\dfrac{ax}{ax+8}} , x ( 0 , + ) x \in (0,+\infty) .

Is it always true that 1 < f ( x ) < 2 1<f(x)<2 for all a ( 0 , + ) a \in (0,+\infty) ?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Apr 8, 2021

Quick -n- dirty check with limits:

l i m x 0 + , a 0 + f ( x ) = 1 1 + 0 + 1 1 + 0 + 1 8 0 2 + 8 1 + 1 + 0 = 2 lim_{x \rightarrow 0^{+}, a \rightarrow 0^{+}} f(x) = \frac{1}{\sqrt{1+0}} + \frac{1}{\sqrt{1+0}} + \sqrt{1 - \frac{8}{0^2+8}} \rightarrow 1 + 1 + 0 = 2 ;

l i m x , a f ( x ) = 1 + 1 + 1 8 0 + 0 + 1 = 1 lim_{x \rightarrow \infty, a \rightarrow \infty} f(x) = \frac{1}{\infty} + \frac{1}{\infty} + \sqrt{1 - \frac{8}{\infty}} \rightarrow 0 + 0 + 1 = 1 .

Thus, it is TRUE that f ( x ) ( 1 , 2 ) f(x) \in (1,2) for all x , a ( 0 , ) . x,a \in (0, \infty).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...