A very long name

Geometry Level 3

a + b + c d = 16 a + b c + d = 30 a b + c + d = 35 a + b + c + d = 42 \begin{aligned} a+b+c-d &=& 16 \\ a+b-c+d &=& 30 \\ a-b+c+d &=& 35 \\-a+b+c+d &=& 42 \end{aligned}

If constants a , b , c , d a,b,c,d satisfy the system of equations above, find the area of a cyclic quadrilateral with sides a , b , c , d a,b,c,d .

Inspiration


The answer is 210.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vighnesh Raut
Apr 24, 2015

The area A of cyclic quadrilateral with sides a,b,c and d is given by A = ( s a ) ( s b ) ( s c ) ( s d ) A=\sqrt { (s-a)(s-b)(s-c)(s-d) } where s = ( a + b + c + d ) 2 s=\frac { (a+b+c+d) }{ 2 } Now, substituting the value of s in A , we get A = 1 4 ( a + b + c d ) ( a + b c + d ) ( a b + c + d ) ( a + b + c + d ) = 1 4 16 × 30 × 35 × 42 = 840 4 = 210 A=\frac { 1 }{ 4 } \sqrt { (a+b+c-d)(a+b-c+d)(a-b+c+d)(-a+b+c+d) } \\ =\frac { 1 }{ 4 } \sqrt { 16\times 30\times 35\times 42 } \\ =\frac { 840 }{ 4 } =210

PROOF of the formula:

Assume A,B,C and D to be the vertices of the cyclic quadrilateral and p,q,r,s be the lengths of sides AD,AB,BC and CD . A r e a o f A B C D = A r e a o f Δ A D B + A r e a o f Δ B D C = p q s i n A 2 + r s s i n C 2 Area\quad of\quad ABCD=Area\quad of\quad \Delta ADB+Area\quad of\quad \Delta BDC\\ =\frac { pqsinA }{ 2 } +\frac { rssinC }{ 2 }

Since, the quadrilateral is cyclic, so SinA=SinC A = p q s i n A 2 + r s s i n A 2 A 2 = 1 4 ( p q + r s ) 2 sin 2 A 4 A 2 = ( p q + r s ) 2 ( 1 cos 2 A ) 4 A 2 = ( p q + r s ) 2 ( p q + r s ) 2 ( cos 2 A ) A=\frac { pqsinA }{ 2 } +\frac { rssinA }{ 2 } \\ { A }^{ 2 }=\frac { 1 }{ 4 } { \left( pq+rs \right) }^{ 2 }\sin ^{ 2 }{ A } \\ 4A^{ 2 }={ \left( pq+rs \right) }^{ 2 }\left( 1-\cos ^{ 2 }{ A } \right) \\ 4A^{ 2 }={ \left( pq+rs \right) }^{ 2 }-{ \left( pq+rs \right) }^{ 2 }\left( \cos ^{ 2 }{ A } \right)

Solving for common side DB , in triangle ADB & BDC , using laws of cosines , we get p 2 + q 2 2 p q c o s A = r 2 + s 2 2 r s c o s C { p }^{ 2 }+{ q }^{ 2 }-2pqcosA={ r }^{ 2 }+{ s }^{ 2 }-2rscosC

As angles A and C are supplementary , cosA=-cosC and 2 ( p q + r s ) c o s A = p 2 + q 2 r 2 s 2 2(pq+rs)cosA={ p }^{ 2 }+{ q }^{ 2 }-{ r }^{ 2 }-{ s }^{ 2 }

Substituting this in the equation of area, we get 16 A 2 = 4 ( p q + r s ) 2 ( p 2 + q 2 r 2 s 2 ) 2 16{ A }^{ 2 }={ 4(pq+rs) }^{ 2 }-{ ({ p }^{ 2 }+{ q }^{ 2 }-{ r }^{ 2 }-{ s }^{ 2 }) }^{ 2 }

The R.H.S. of the equation is of the form a 2 b 2 { a }^{ 2 }-{ b }^{ 2 } , so is can be written as ( 2 ( p q + r s ) ( p 2 + q 2 r 2 s 2 ) ) ( 2 ( p q + r s ) + ( p 2 + q 2 r 2 s 2 ) ) = [ ( r + s ) 2 ( p q ) 2 ] [ ( p + q ) 2 ( r s ) 2 ] = ( p + q + r s ) ( p + q r + s ) ( p q + r + s ) ( p + q + r + s ) (2(pq+rs)-({ p }^{ 2 }+{ q }^{ 2 }-{ r }^{ 2 }-{ s }^{ 2 }))(2(pq+rs)+({ p }^{ 2 }+{ q }^{ 2 }-{ r }^{ 2 }-{ s }^{ 2 }))\\ =\left[ { \left( r+s \right) }^{ 2 }-{ \left( p-q \right) }^{ 2 } \right] \left[ { \left( p+q \right) }^{ 2 }-{ \left( r-s \right) }^{ 2 } \right] \\ =(p+q+r-s)(p+q-r+s)(p-q+r+s)(-p+q+r+s)

So, the area of cyclic quadrilateral with sides a,b,c and d can be written as A = 1 4 ( a + b + c d ) ( a + b c + d ) ( a b + c + d ) ( a + b + c + d ) A=\frac { 1 }{ 4 } \sqrt { (a+b+c-d)(a+b-c+d)(a-b+c+d)(-a+b+c+d) }

WOW COOL! You should post this on the wiki itself!

Pi Han Goh - 6 years, 1 month ago

Log in to reply

OK...Done...

Vighnesh Raut - 6 years, 1 month ago

Great Job! I didn't think about that formula. I was going to do the hard work of finding the values of a,b,c,d and and then using Brahmagupta's formula.

Aaryaman Gupta - 5 years, 8 months ago
Rajen Kapur
Apr 24, 2015

Use Brahmgupta's Formula for finding the area of a cyclic quadrilateral. 4 x Area^2 = (a + b + c - d) ( a + b - c + d) ( a - b + c + d) ( -a + b + c + d).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...