A very powerful product

Algebra Level 3

n = 0 6 4 ( 1 / 3 ) n = ? \Large \prod_{n=0}^\infty 64^{(1/3)^n} = \ ?


The answer is 512.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let S = n = 0 6 4 ( 1 3 ) n . \large S = \displaystyle\prod_{n=0}^{\infty}64^{(\frac{1}{3})^{n}}. Then

log 64 S = n = 0 log 64 6 4 ( 1 3 ) n = \large \log_{64}S = \displaystyle\sum_{n=0}^{\infty} \log_{64}64^{(\frac{1}{3})^{n}} = n = 0 ( 1 3 ) n = 1 1 1 3 = 3 2 . \displaystyle\sum_{n=0}^{\infty} \left(\dfrac{1}{3}\right)^{n} = \dfrac{1}{1 - \dfrac{1}{3}} = \dfrac{3}{2}.

Thus S = 6 4 3 2 = ( 2 6 ) 3 2 = 2 9 = 512 . \large S = 64^{\frac{3}{2}} = (2^{6})^{\frac{3}{2}} = 2^{9} = \boxed{512}.

Yep, this is the exact kind of solution I was looking for!

The key here is to recognize the exponent rule for products: When you multiply powers with the same base, you add the exponents. This gives you a geometric series.

Andy Hayes - 5 years, 7 months ago

Can you explain me your 'S' and l o g log and how did the product change into Summation ?

Vishal Yadav - 5 years, 7 months ago

Log in to reply

Recall that, in any base a > 0 a \gt 0 we have that

log a ( x y ) = log a ( x ) + log a ( y ) . \log_{a}(xy) = \log_{a}(x) + \log_{a}(y).

Now S = 6 4 ( 1 3 ) 0 6 4 ( 1 3 ) 1 6 4 ( 1 3 ) 2 . . . . . , S = \large 64^{(\frac{1}{3})^{0}} * 64^{(\frac{1}{3})^{1}} * 64^{(\frac{1}{3})^{2}} * .....,

and so log 64 S = log 64 ( 6 4 ( 1 3 ) 0 ) + log 64 ( 6 4 ( 1 3 ) 1 ) + log 64 ( 6 4 ( 1 3 ) 2 ) + . . . . . = \large \log_{64}S = \log_{64}(64^{(\frac{1}{3})^{0}}) + \log_{64}(64^{(\frac{1}{3})^{1}}) + \log_{64}(64^{(\frac{1}{3})^{2}}) + ..... =

( 1 3 ) 0 + ( 1 3 ) 1 + ( 1 3 ) 2 + . . . . . = 1 1 1 3 = 3 2 , \left(\dfrac{1}{3}\right)^{0} + \left(\dfrac{1}{3}\right)^{1} + \left(\dfrac{1}{3}\right)^{2} + ..... = \dfrac{1}{1 - \dfrac{1}{3}} = \dfrac{3}{2},

where the fact that log a ( a b ) = b \log_{a}(a^{b}) = b was used.

Brian Charlesworth - 5 years, 7 months ago

Log in to reply

Got It. Thanks.

Vishal Yadav - 5 years, 7 months ago
Michael Fuller
Nov 6, 2015

Start by adding the exponents. n = 0 64 ( 1 / 3 ) n = 64 ( 1 / 3 ) 0 × 64 ( 1 / 3 ) 1 × 64 ( 1 / 3 ) 2 × = 64 1 + 1 3 + 1 9 + \large \prod _{ n=0 }^{ \infty }{ { 64 }^{ { \left( { 1 }/3 \right) }^{ n } } } ={ 64 }^{ { \left( { 1 }/3 \right) }^{ 0 } }\times { 64 }^{ { \left( { 1 }/3 \right) }^{ 1 } }\times { 64 }^{ { \left( { 1 }/3 \right) }^{ 2 } }\times \dots ={ 64 }^{ 1+\frac { 1 }{ 3 } +\frac { 1 }{ 9 } +\dots }

The exponent is now a geometric progression with r < 1 |r|<1 , so we can use S = a 1 r \displaystyle {S}_{ \infty } = \frac{a}{1-r} . 1 + 1 3 + 1 9 + = n = 0 1 3 n = 1 1 1 3 = 1 2 3 = 3 2 \large 1+\frac { 1 }{ 3 } +\frac { 1 }{ 9 } +\dots =\sum _{ n=0 }^{ \infty }{ \frac { 1 }{ { 3 }^{ n } } } =\frac { 1 }{ 1-\frac { 1 }{ 3 } } =\frac { 1 }{ \frac { 2 }{ 3 } } =\frac { 3 }{ 2 }

Finally, n = 0 64 ( 1 / 3 ) n = 64 3 / 2 = 512 \large \prod _{ n=0 }^{ \infty }{ { 64 }^{ { \left( { 1 }/3 \right) }^{ n } } } ={ 64 }^{ { { 3 }/{ 2 } } } = \color{#20A900}{\boxed{512}}

Mine was the exact same method

Shreyash Rai - 5 years, 7 months ago
Lukas Leibfried
Nov 18, 2015

Convert to a summation problem by recognizing that exponents add when multiplied.

S = 1 + 1 3 + 1 9 + . . . S = 1 + \frac{1}{3} + \frac{1}{9} + ... S = 1 + 1 3 ( 1 + 1 3 + 1 9 + . . . ) S = 1 + \frac{1}{3}(1 + \frac{1}{3} + \frac{1}{9} + ...) S = 1 + 1 3 S S = 1 + \frac{1}{3} S 2 3 S = 1 \frac{2}{3} S = 1 S = 3 2 S = \frac{3}{2}

Now evaluate the answer using 3 2 \frac{3}{2} as your exponent.

6 4 3 2 = 512 64^{\frac{3}{2}} = \boxed{512}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...