A War with Modulus

Algebra Level 4

If the number of common points satisfying the following equations

x y = 1 2 a x y + 1 = 2 x + a y \begin{aligned} \|x|-|y\|&=&1 \\ 2 a|x\|y|+1&=&2 |x|+a |y| \end{aligned}

is 8 8 , find the value of 3 a 3a , where a < 1 a<1 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The second equation can be written as :

( 2 x 1 ) ( a y 1 ) = 0 (2|x|-1)(a|y|-1)=0 . We have , x = 1 2 , y = 1 a |x|=\frac{1}{2},|y|=\frac{1}{a} .

This in turn implies a > 0 a>0 as y > 0 |y|>0 .

We have from first equation , 1 2 1 a = 1 |\frac{1}{2}-\frac{1}{a}|=1 . Since 1 a > 1 \frac{1}{a}>1 Which implies 1 2 1 a < 0 \frac{1}{2}-\frac{1}{a}<0 .

1 a 1 2 = 1 \frac{1}{a}-\frac{1}{2}=1 .

a = 2 3 3 a = 2 a=\frac{2}{3}\implies \boxed{3a=2}

You never used the fact that no. of common points are 8 8 and the answer also changes with that.

Rishik Jain - 3 years, 4 months ago

2 a x y + 1 = 2 x + a y , ( 1 2 x ) = a y ( 1 2 x ) . ( 1 2 x ) ( 1 a y ) = 0. S o x = 1 2 . . . . ( A ) o r / a n d a y = 1.... ( B ) S u b s t i t u t i n g ( A ) i n x y = 1 , w e h a v e 1 2 y = 1. y = 3 2 . I f b o t h ( A ) a n d ( B ) a r e t r u e , a y = 1 , a 3 2 = 1 , t h a t i s a = 2 3 < 1.... ( C ) L e t u s c h e c k . L H S o f e q u a t i o n t w o = 2 2 3 1 2 2 3 + 1 = 2. R H S = 2 1 2 + 2 3 3 2 = 2. S o L H S = R H S , s o a s s u m p t i o n i s t r u e . S o 3 a = 3 2 3 = 2. 2a|x||y|+1=2|x|+a|y|,~~~\implies~~(1-2|x|)=a|y|(1-2|x|).\\ \therefore~~(1-2|x|)*(1 - a|y|)=0.\\ So~|x|=\dfrac 1 2 ....(A) ~~or/and~~a|y|=1....(B)\\ Substituting~(A)~in~\Bigg |~|x| - |y|~\Bigg |=1,~~we~have~\Bigg |~\dfrac 1 2 - |y|~\Bigg |=1.~\implies~|y|=\dfrac 3 2.\\ If~ both~(A)~and~(B)~are~true,~~a|y|=1,~\implies~a*\dfrac 3 2=1,~that ~is~a=\dfrac 2 3< 1....(C)\\ Let~ us~ check.~LHS~of~equation~two=2*\dfrac 2 3*\dfrac 1 2*\dfrac 2 3 +1=2.~~RHS=2*\dfrac 1 2 + \dfrac 2 3 *\dfrac 3 2=2.\\ So~LHS=RHS, ~so~assumption~is~true.~~So~3a=3*\dfrac 2 3 =\large ~~\color{#D61F06}{2}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...