A Wee Triangle

Geometry Level pending

Find the area of the smallest triangle A B C ABC with vertex coordinates:

A = ( 0 , 0 ) , B = ( 2 + a , 2 a ) , C = ( 2 a , 3 a ) A = (0,0), B=(2+a, 2-a), C=(2a, 3-a) , where 0 < a < 3 0 < a < 3 .

If this area is expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers, submit p + q p+q .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sathvik Acharya
Apr 24, 2021

Area of A B C \triangle ABC with coordinates ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) and ( x 3 , y 3 ) (x_3,y_3) is, 1 2 x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 = 1 2 0 0 1 2 + a 2 a 1 2 a 3 a 1 = 1 2 [ ( 2 + a ) ( 3 a ) ( 2 a ) ( 2 a ) ] = 1 2 [ a 2 3 a + 6 ] = 1 2 [ ( a 3 2 ) 2 + 15 4 ] \begin{aligned} \frac{1}{2} \begin{vmatrix} x_1&y_1&1 \\x_2&y_2&1 \\ x_3&y_3&1\end{vmatrix}&=\frac{1}{2} \begin{vmatrix} 0&0&1 \\2+a&2-a&1 \\ 2a&3-a&1\end{vmatrix} \\ \\ &=\frac{1}{2}\left[(2+a)(3-a)-(2-a)(2a)\right] \\ \\ &=\frac{1}{2}\left[a^2-3a+6\right ] \\ \\ &=\frac{1}{2}\left[\left(a-\frac{3}{2}\right)^2+\frac{15}{4}\right] \end{aligned} The above expression which represents the area of the triangle is minimized when a = 3 2 a=\dfrac{3}{2} and hence minimum the area is 15 8 \boxed{\dfrac{15}{8}}

Therefore, p = 15 , q = 8 p + q = 23 p=15,\; q=8\implies p+q=\boxed{23}

that was fast. well done.

Fletcher Mattox - 1 month, 2 weeks ago

Log in to reply

Thank you !

Sathvik Acharya - 1 month, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...