Weird Equations

Algebra Level 5

x 4 + 2 y 3 x = 1 4 + 3 3 y 4 + 2 x 3 y = 1 4 3 3 \begin{aligned} x^4+2y^3 - x & = -\frac{1}{4} + 3\sqrt{3} \\ y^4 + 2x^3 - y & = -\frac{1}{4} - 3\sqrt{3} \end{aligned}

Find the number of solutions in real numbers to the system of equations above.

2 3 0 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alan Yan
Nov 11, 2015

Add the equations and you get ( x 4 + 2 x 3 x + 1 4 ) + ( y 4 + 2 y 3 y + 1 4 ) = 0 ( x 2 + x 1 2 ) 2 + ( y 2 + y 1 2 ) 2 = 0 x = 1 ± 3 2 , y = 1 ± 3 2 \begin{aligned} \left(x^4 + 2x^3 - x + \frac{1}{4}\right) + \left(y^4 + 2y^3 - y + \frac{1}{4}\right) & = 0 \\ \left(x^2 + x - \frac{1}{2}\right)^2 + \left(y^2 + y - \frac{1}{2}\right)^2 & = 0 \\ \implies x = \frac{-1 \pm \sqrt{3}}{2} , y = \frac{-1 \pm \sqrt{3}}{2} \end{aligned} We can check that the only solution is ( x , y ) = ( 1 3 2 , 1 + 3 2 ) (x,y) = \left(\frac{-1 - \sqrt{3}}{2} , \frac{-1 + \sqrt{3}}{2}\right) .

You should write We check.....only real solution is

Department 8 - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...