A weird inequality

Algebra Level 4

2 3 ( e x + y 2 + e y + z 2 + e z + x 2 ) e x + e y + e z 3 \large{\frac { 2 }{ 3 } \left( { e }^{ \frac { x+y }{ 2 } }+{ e }^{ \frac { y+z }{ 2 } }+{ e }^{ \frac { z+x }{ 2 } } \right) -\frac { { e }^{ x }+{ e }^{ y }+{ e }^{ z } }{ 3 } }

For some real numbers x , y , z x,y,z that satisfies the condition x + y + z = 6 x+y+z=6 and the maximum value of above expression is M M . Find 1000 M \left\lfloor 1000M \right\rfloor .


The answer is 7389.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Harsh Khatri
Feb 6, 2016

One needs to maximise the first part and minimise the second part in order to get maximum value of the whole expression.

For the second part:

( e x + e y + e z 3 ) m i n \displaystyle \bigg( \frac{ e^x + e^y + e^z} {3} \bigg)_{min}

Applying A M G M \displaystyle AM-GM and also the condition for equality x = y = z = 2 \displaystyle x = y = z = 2 :

= e 2 e 2 e 2 3 \displaystyle = \sqrt[3]{ e^2 \cdot e^2 \cdot e^2}

= e 2 \displaystyle = e^2

For the first part:

( 2 3 ( e x 2 e y 2 + e y 2 e z 2 + e z 2 e x 2 ) ) m a x \displaystyle \Bigg( \frac{2}{3} \Big( e^{\frac{x}{2}} \cdot e^{\frac{y}{2}} + e^{\frac{y}{2}} \cdot e^{\frac{z}{2}} + e^{\frac{z}{2}} \cdot e^{\frac{x}{2}} \Big) \Bigg)_{max}

Applying Cauchy-Shwartz inequality and also applying the condition for equality x = y = z = 2 \displaystyle x = y = z = 2 :

= 2 3 ( ( ( e x 2 ) 2 + ( e y 2 ) 2 + ( e z 2 ) 2 ) ( ( e x 2 ) 2 + ( e y 2 ) 2 + ( e z 2 ) 2 ) ) \displaystyle = \frac{2}{3} \bigg( \sqrt{ \big( (e^{\frac{x}{2}})^{2} + (e^{\frac{y}{2}})^{2} + (e^{\frac{z}{2}})^{2} \big) \cdot \big( (e^{\frac{x}{2}})^{2} + (e^{\frac{y}{2}})^{2} + (e^{\frac{z}{2}})^{2} \big) } \bigg)

= 2 3 ( 3 e 2 ) ( 3 e 2 ) \displaystyle = \frac{2}{3} \sqrt{ (3e^{2}) \cdot (3e^{2}) }

= 2 3 × ( 3 e 2 ) \displaystyle = \frac{2}{3} \times (3 e^{2})

= 2 e 2 \displaystyle = 2 e^{2}

Hence, the maximum value of the given expression boils down to:

M = ( 2 e 2 ) ( e 2 ) \displaystyle M = (2 e^{2} ) - (e^{2})

M = e 2 = 7.3891 \displaystyle M = e^{2} = 7.3891

1000 M = 7389 \displaystyle \Rightarrow \lfloor 1000M \rfloor = \boxed{7389}

@Lakshya Sinha I wonder why applying C a u c h y S h w a r t z Cauchy-Shwartz or A M G M AM-GM to the first part yields the same answer.

I did not use A M G M AM-GM else you would have asked for a proof. I know why both maximum and minimum values are equal, this time I am asking you for a proof. It should be easy for you.

Harsh Khatri - 5 years, 4 months ago

Log in to reply

Dude I must tell you that I created a weaker inequality at first then I solved as you did and then I used the theorem as mentioned in my solution

Department 8 - 5 years, 4 months ago
Chew-Seong Cheong
Oct 12, 2016

Let X = 2 3 ( e x + y 2 + e y + z 2 + e z + x 2 ) e x + e y + e z 3 \begin{aligned} X & = \frac 23 \left(\color{#3D99F6}{e^\frac {x+y}2 + e^\frac {y+z}2 + e^\frac {z+x}2}\right) - \frac {\color{#D61F06}{e^x+e^y+e^z}}3 \end{aligned}

It is shown later that when x = y = z = 2 x=y=z=2 , X X maximizes when Y = e x + y 2 + e y + z 2 + e z + x 2 \color{#3D99F6}{Y = e^\frac {x+y}2 + e^\frac {y+z}2 + e^\frac {z+x}2} is maximum and Z = e x + e y + e z \color{#D61F06}{Z = e^x+e^y+e^z} is minimum.

Using RMS-AM inequality on Y Y

e x + y 2 + e y + z 2 + e z + x 2 3 e x + y + e y + z + e z + x 3 At equality x = y = z = 2 e 2 \begin{aligned} \frac {\color{#3D99F6}{e^\frac {x+y}2 + e^\frac {y+z}2 + e^\frac {z+x}2}}3 & \le \sqrt{\frac {e^{x+y} + e^{y+z} + e^{z+x}}3} & \small \color{#3D99F6}{\text{At equality }x=y=z=2} \\ & \le e^2 \end{aligned}

Applying AM-GM inequality on Z Z

e x + e y + e z 3 e x + y + z 3 = e 6 3 = e 2 \begin{aligned} \frac {\color{#D61F06}{e^x+e^y+e^z}}3 & \ge \sqrt[3]{e^{x+y+z}} = \sqrt[3]{e^6} = e^2 \end{aligned}

Again equality occurs when x = y = z = 2 x=y=z=2 .

Therefore, X m a x = 2 e 2 e 2 = e 2 7.389 X_{max} = 2e^2 - e^2 = e^2 \approx 7.389 1000 M = 1000 × 7.389 = 7389 \implies \lfloor 1000M\rfloor = \lfloor 1000\times 7.389\rfloor = \boxed{7389}

Department 8
Feb 4, 2016

consider the function f ( a ) = e a f(a)=e^{a} now use this .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...