A Weird Limit

Calculus Level 3

lim x 1 ( x x sin ( 1 x ) ) = ? \Large \lim_{x \to 1} \left ( x^\frac{x}{\sin(1-x)} \right) = \, ?

1 e \frac{1}{e} \infty 1 1 0 0 1 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Repeated Application of L'Hopital's Rule - Medium

L = lim x 1 x x sin ( 1 x ) = lim x 1 exp ( ln x x sin ( 1 x ) ) = lim x 1 exp ( x ln x sin ( 1 x ) ) A 0/0 cases, L’H o ˆ pital’s rule applies. = lim x 1 exp ( ln x + 1 cos ( 1 x ) ) Differentiate up and down w.r.t. x . = e 1 = 1 e \begin{aligned} L & = \lim_{x \to 1} x^{\frac x{\sin (1-x)}} \\ & = \lim_{x \to 1} \exp \left(\ln x^{\frac x{\sin (1-x)}}\right) \\ & = \lim_{x \to 1} \exp \left(\frac {x \ln x}{\sin (1-x)}\right) & \small {\color{#3D99F6}\text{A 0/0 cases, L'Hôpital's rule applies.}} \\ & = \lim_{x \to 1} \exp \left(\frac {\ln x + 1}{-\cos (1-x)}\right) & \small {\color{#3D99F6}\text{Differentiate up and down w.r.t. }x.} \\ & = e^{-1} = \boxed{\dfrac 1e} \end{aligned}

Thank you for the nice solution.

Hana Wehbi - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...