A Weird Little Series...

Algebra Level 5

1 + m = 1 ( 1 ) m P odd ( m ) 2 m m ! \large1+\sum_{m=1}^{\infty} (-1)^{m}\frac{P_{\text{odd}}(m)}{2^{m}m!}

The above expression can be written as n , \sqrt{n}, where n n is a positive integer.

What is n ? n?

Note: P odd ( m ) = k = 0 m 1 ( 2 k 1 ) P_{\text{odd}}(m)=\prod\limits_{k=0}^{m-1}(2k-1)


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 16, 2018

Consider the binomial expansion of 1 + x \sqrt{1+x} as follows:

1 + x = 1 + 1 2 x 1 2 1 2 x 2 2 ! + 1 2 1 2 3 2 x 3 3 ! 1 2 1 2 3 2 5 2 x 4 4 ! + 1 2 1 2 3 2 5 2 7 2 x 5 5 ! = 1 + m = 1 ( 1 ) m k = 0 m 1 ( 2 k 1 ) 2 m m ! x m Putting x = 1 2 = 1 + m = 1 ( 1 ) m k = 0 m 1 ( 2 k 1 ) 2 m m ! \begin{aligned} \sqrt{1+x} & = 1 + \frac 12 x - \frac 12 \cdot \frac 12 \cdot \frac {x^2}{2!} + \frac 12 \cdot \frac 12 \cdot \frac 32 \cdot \frac {x^3}{3!} - \frac 12 \cdot \frac 12 \cdot \frac 32 \cdot \frac 52 \cdot \frac {x^4}{4!} + \frac 12 \cdot \frac 12 \cdot \frac 32 \cdot \frac 52 \cdot \frac 72 \cdot \frac {x^5}{5!} - \cdots \\ & = 1 + \sum_{m=1}(-1)^m \frac {\prod_{k=0}^{m-1}(2k-1)}{2^m m!}x^m \quad \quad \small \color{#3D99F6} \text{Putting }x = 1 \\ \sqrt 2 & = 1 + \sum_{m=1}(-1)^m \frac {\prod_{k=0}^{m-1}(2k-1)}{2^m m!} \end{aligned}

Therefore, n = 2 n = \boxed 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...