A Weird Sum To infinity

Calculus Level 4

n = 2 n 4 + 3 n 2 + 10 n + 10 2 n ( n 4 + 4 ) \large \displaystyle \sum_{n=2}^{\infty} \dfrac{n^4 + 3n^2 + 10n + 10}{2^n (n^4+4)}

If the summation above can be written as a b \frac ab for coprime positive integer, find a ( b + 1 ) a(b+1) .

Innovative solutions are welcome!
Try my set .


The answer is 121.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Jun 10, 2015

Note that n 4 + 3 n 2 + 10 n + 10 = ( n 4 + 4 ) + ( 3 n 2 + 10 n + 6 ) n^4 + 3n^2 + 10n + 10 = (n^4 + 4) + (3n^2 + 10n + 6) , then n 4 + 3 n 2 + 10 n + 10 2 n ( n 4 + 4 ) = 1 2 n + 3 n 2 + 10 n + 6 2 n ( n 4 + 4 ) \large \frac {n^4 + 3n^2 + 10n + 10}{2^n (n^4+4)} = \frac1{2^n} + \frac{3n^2+10n+6}{2^n (n^4 + 4)} .

By Sophie Germain Identity, we can see that n 4 + 4 n^4 + 4 factors to ( n 2 2 n + 2 ) ( n 2 + 2 n + 2 ) (n^2 - 2n+ 2)(n^2+2n+2) . Thus by partial fractions,

3 n 2 + 10 n + 6 n 4 + 4 4 n 2 2 n + 2 1 n 2 + 2 n + 2 = 4 ( n 1 ) 2 + 1 1 ( n + 1 ) 2 + 1 \begin{aligned} \frac{3n^2+10n+6}{n^4 + 4} &\equiv & \frac4{n^2-2n+2} - \frac1{n^2+2n+2} \\ &=& \frac4{(n-1)^2+1} - \frac1{(n+1)^2 + 1} \end{aligned}

Hence the series equals to

n = 2 n 4 + 3 n 2 + 10 n + 10 2 n ( n 4 + 4 ) = n = 2 1 2 n + n = 2 ( 1 2 n 4 ( n 1 ) 2 + 1 1 2 n 1 ( n + 1 ) 2 + 1 ) = 1 / 2 2 1 1 / 2 + n = 2 ( 1 2 n 1 2 ( n 1 ) 2 + 1 1 2 n + 1 2 ( n + 1 ) 2 + 1 ) = 1 2 + n = 2 ( a n 1 a n + 1 ) = 1 2 + ( a 1 + a 2 ) = 1 2 + 2 ( 1 2 1 ( 1 2 + 1 ) + 1 2 2 ( 2 2 + 1 ) ) = 11 10 \begin{aligned} && \displaystyle \sum_{n=2}^\infty \dfrac{n^4 + 3n^2 + 10n + 10}{2^n (n^4+4)} \\ &=& \displaystyle \sum_{n=2}^\infty \frac1{2^n} + \sum_{n=2}^\infty \left ( \frac1{2^n} \cdot \frac4{(n-1)^2+1} - \frac1{2^n} \cdot \frac1{(n+1)^2+1} \right ) \\ &=& \displaystyle \frac{1/2^2}{1-1/2} + \sum_{n=2}^\infty \left ( \frac1{2^{n-1}} \cdot \frac2{(n-1)^2+1} - \frac1{2^{n+1}} \cdot \frac2{(n+1)^2+1} \right ) \\ &=& \displaystyle \frac12 + \sum_{n=2}^\infty \left ( a_{n-1} - a_{n+1} \right) \\ &=& \displaystyle \frac12 + \left ( a_1 + a_2 \right) \\ &=& \frac12 + 2 \left( \frac1{2^1(1^2 + 1)} + \frac1{2^2(2^2+1)} \right) = \frac{11}{10} \\ \end{aligned}

Hence, a = 11 , b = 10 a ( b + 1 ) = 121 a=11,b=10 \Rightarrow a(b+1) = \boxed{121} .

Moderator note:

While it is great that you cared about the validity of "interchanging order of summation and limits", there actually isn't a need to do so when the telescoping summation results in cancellation of "nearby" terms (because we're not interchanging the order).

The issue only arises when we have to cancel a term with something that that progressively further down. IE If the cancellation is a i a i + 1 a_i - a_{i+1} , then we get ( a 1 a 2 ) + ( a 2 a 3 ) + ( a 3 a 4 ) + = a 1 + ( a 2 + a 2 ) + ( a 3 + a 3 ) + = a 1 (a_1 - a_2) + (a_2 - a_3) + (a_3 - a_4) + \ldots \\ = a_1 + ( - a_2 + a_2) + (-a_3 + a_3) + \ldots = a_1 , then that is legal if a n a_n tends to 0.

However, further justification will be necessary for the equality of ( a 1 a 2 ) + ( a 2 a 4 ) + ( a 3 a 6 ) + ( a 4 a 8 ) + = a 1 + a 3 + a 5 + (a_1 - a_2) + (a_2 - a_4) + (a_3 - a_6) + (a_4 - a_8 ) + \ldots = a_1 + a_3 + a_5 + \ldots , even if a n a_n tends to 0.

Challenge Master: fixed thank you!

Pi Han Goh - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...