A weird sum

Calculus Level 2

Find the sum of the infinite series: 4 4 3 + 4 5 4 7 + . . . 4-\dfrac{4}{3}+\dfrac{4}{5}-\dfrac{4}{7}+... . Round your answer to 2 decimals.


The answer is 3.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Maclaurin Series

S = 4 4 3 + 4 5 4 7 + = 4 ( 1 1 3 + 1 5 1 7 + ) By Maclaurin series = 4 tan 1 1 = 4 × π 4 = π 3.142 \begin{aligned} S & = 4 - \frac 43 + \frac 45 - \frac 47 + \cdots \\ & = 4 \color{#3D99F6} \left(1- \frac 13 + \frac 15 - \frac 17 + \cdots \right) & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = 4\ {\color{#3D99F6} \tan^{-1} 1} = 4 \times \frac \pi 4 = \pi \\ & \approx \boxed{3.142} \end{aligned}

The function can be rewritten as: 4 n = 0 ( 1 ) n + 1 ( 2 n 1 ) 4\sum_{n=0}^{∞}\frac{(-1)^{n+1}}{(2n-1)} .
This is the Taylor Series for 4 a r c t a n ( x ) 4arctan(x) .
Thus, the answer is 4 a r c t a n ( ) 4 a r c t a n ( 1 ) = 4 π 2 4 π 4 = 4 π 4 = π 4arctan(∞)-4arctan(1)=4\frac{\pi}{2}-4\frac{\pi}{4}=4\frac{\pi}{4}=\pi .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...