A year ahead!

Geometry Level 4

s = sec 0 π 2016 sin π 2016 sec 2 π 2016 + sec 2 π 2016 sin 3 π 2016 sec 4 π 2016 + + sec 670 π 2016 sin 671 π 2016 sec 672 π 2016 s=\sec { \frac { 0\pi }{ 2016 } } \sin { \frac { \pi }{ 2016 } } \sec { \frac { 2\pi }{ 2016 } } +\sec { \frac { 2\pi }{ 2016 } } \sin { \frac { 3\pi }{ 2016 } } \sec { \frac { 4\pi }{ 2016 } } \\ +\ldots +\sec { \frac { 670\pi }{ 2016 } } \sin { \frac { 671\pi }{ 2016 } } \sec { \frac { 672\pi }{ 2016 } }

If s s satisfy the equation above, find s π s\pi .

Try more problems here .


The answer is 1008.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Abhishek Sharma
Dec 13, 2014

By observation,

T r = sec ( 2 r 2 ) π 2016 sin ( 2 r 1 ) π 2016 sec 2 r π 2016 { T }_{ r }=\sec { \frac { (2r-2)\pi }{ 2016 } } \sin { \frac { (2r-1)\pi }{ 2016 } } \sec { \frac { 2r\pi }{ 2016 } }

Let A = ( 2 r 2 ) π 2016 A=\frac { (2r-2)\pi }{ 2016 } and B = 2 r π 2016 B=\frac { 2r\pi }{ 2016 } .

Now,

T r = sec A sin A + B 2 sec B { T }_{ r }=\sec { A } \sin { \frac { A+B }{ 2 } } \sec { B }

T r = sin A + B 2 cos A cos B { T }_{ r }=\frac { \sin { \frac { A+B }{ 2 } } }{ \cos { A } \cos { B } }

Multiplying and dividing with 2 sin A B 2 2\sin { \frac { A-B }{ 2 } } ,

T r = 1 2 sin A B 2 2 sin A + B 2 sin A B 2 cos A cos B { T }_{ r }=\frac { 1 }{ 2\sin { \frac { A-B }{ 2 } } } \frac { 2\sin { \frac { A+B }{ 2 } } \sin { \frac { A-B }{ 2 } } }{ \cos { A } \cos { B } }

Using trignometric identity,

T r = 1 2 sin A B 2 cos B cos A cos A cos B { T }_{ r }=\frac { 1 }{ 2\sin { \frac { A-B }{ 2 } } } \frac { \cos { B } -\cos { A } }{ \cos { A } \cos { B } }

Multiplying and dividing by cos A cos B \cos A\cos B ,

T r = 1 2 sin A B 2 ( sec A sec B ) { T }_{ r }=\frac { 1 }{ 2\sin { \frac { A-B }{ 2 } } } (\sec { A } -\sec { B } )

Replacing A A and B B with ( 2 r 2 ) π 2016 \frac { (2r-2)\pi }{ 2016 } and 2 r π 2016 \frac { 2r\pi }{ 2016 } respectively,

T r = 1 2 sin π 2016 ( sec 2 r π 2016 sec ( 2 r 2 ) π 2016 ) { T }_{ r }=\frac { 1 }{ 2\sin { \frac { \pi }{ 2016 } } } (\sec { \frac { 2r\pi }{ 2016 } } -\sec { \frac { (2r-2)\pi }{ 2016 } } )

We have been able to express the r t h rth term as difference of two consecutive terms.

s = 1 336 1 2 sin π 2016 ( sec 2 r π 2016 sec ( 2 r 2 ) π 2016 ) s=\sum _{ 1 }^{ 336 }{ \frac { 1 }{ 2\sin { \frac { \pi }{ 2016 } } } (\sec { \frac { 2r\pi }{ 2016 } } -\sec { \frac { (2r-2)\pi }{ 2016 } } ) }

For small values of x x ,

sin x x { \sin { x } }\approx x ,

s = 1 336 1008 π ( sec 2 r π 2016 sec ( 2 r 2 ) π 2016 ) s=\sum _{ 1 }^{ 336 }{ \frac { 1008 }{ \pi } (\sec { \frac { 2r\pi }{ 2016 } } -\sec { \frac { (2r-2)\pi }{ 2016 } } ) }

We observe that this is a telescoping series.

336 336 goes to termwise greater term and 1 1 goes to termwise smaller term.

s = 1008 π ( sec 2 ( 336 ) π 2016 sec ( 2 ( 1 ) 2 ) π 2016 ) s=\frac { 1008 }{ \pi } (\sec { \frac { 2(336)\pi }{ 2016 } } -\sec { \frac { (2(1)-2)\pi }{ 2016 } } )

s = 1008 π ( sec π 3 sec 0 ) s=\frac { 1008 }{ \pi } (\sec { \frac { \pi }{ 3 } } -\sec { 0 } )

s = 1008 π ( 2 1 ) s=\frac { 1008 }{ \pi } (2-1)

s = 1008 π s=\frac { 1008 }{ \pi }

s π = 1008 s\pi =1008

Your problem was unclear because the long ... made it not obvious that you had an ending term. I've rephrased your problem accordingly.

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

Thank you.! I am kind of beginner with LaTeX \LaTeX .

Abhishek Sharma - 6 years, 5 months ago

Log in to reply

You're doing great! I'm impressed by the complicated latex in your solution above.

No worries, we all had to start somewhere! After learning the basics, you pick up several tricks about how to make the latex nicer / more readable. For example, I used \ to force it to start a new line.

Calvin Lin Staff - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...