a 2 b 2 a^{2} - b^{2}

Algebra Level 2

If a = 2 2005 + 2 2005 a = 2^{2005} + 2^{-2005} and b = 2 2005 2 2005 b = 2^{2005} - 2^{-2005} then what is a 2 b 2 a^{2} - b^{2} ?

4 2 3 0 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Nov 13, 2017

In general, if a = x + y a = x + y and b = x y b = x - y , then a 2 b 2 = ( x + y ) 2 ( x y ) 2 = ( x 2 + 2 x y + y 2 ) ( x 2 2 x y + y 2 ) = 2 x y ( 2 x y ) = 4 x y . a^2 - b^2 = (x+y)^2 - (x-y)^2 = (x^2+2xy +y^2) - (x^2-2xy+y^2) = 2xy - (-2xy) = 4xy. In this case, a 2 b 2 = 4 2 2005 2 2005 = 4 1 = 4. a^2 - b^2 = 4\cdot 2^{2005}\cdot 2^{-2005} = 4\cdot 1 = 4.

good explanation

Rafik Hawking - 3 years, 6 months ago
Kb E
Nov 13, 2017

a 2 b 2 = ( a b ) ( a + b ) = 2 2 2005 2 2 2005 = 4 a^2-b^2 = (a-b)(a+b) = 2\cdot 2^{-2005}\cdot 2 \cdot 2^{2005} = 4 .

good explanation

Rafik Hawking - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...