a 2 + b 2 a^{2}+b^{2}

Geometry Level 5

Given the function f ( x ) = a sin ( x ) + b cos ( x ) 1 + b sin ( x ) a cos ( x ) f(x)=|a\sin(x)+b\cos(x)-1|+|b\sin(x)-a\cos(x)| for a , b R a,b \in \mathbb R .

If the maximum value of f ( x ) f(x) is 11 11 , what is a 2 + b 2 a^{2}+b^{2} ?


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jun 20, 2019

Without loss of generality, a , b > 0 a,b > 0 . We can write a sin x + b cos x = R sin ( x + ϵ ) a cos x b sin x = R cos ( x + ϵ ) a\sin x + b\cos x \; = \; R\sin(x + \epsilon) \hspace{2cm} a\cos x - b\sin x \; = \; R\cos(x + \epsilon) where R = a 2 + b 2 R = \sqrt{a^2 + b^2} and 0 < ϵ < 1 2 π 0 < \epsilon < \tfrac12\pi and tan ϵ = b a \tan\epsilon = \tfrac{b}{a} . Thus we want to maximize R sin ( x + ϵ ) 1 + R cos ( x + ϵ ) x R |R\sin(x+\epsilon)-1| + |R\cos(x+\epsilon)| \hspace{2cm} x \in \mathbb{R} which is the same as maximizing f ( x ) = R sin x 1 + R cos x x R f(x) \; = \; |R\sin x - 1| + R|\cos x| \hspace{2cm} x \in \mathbb{R} We note that 0 f ( x ) R ( sin x + cos x ) + 1 R 2 + 1 x R 0 \le f(x) \le R(|\sin x| + |\cos x|) + 1 \; \le \; R\sqrt{2} + 1 \hspace{2cm} x \in \mathbb{R} and we note that f ( 1 4 π ) = R 2 + 1 f(-\tfrac14\pi) \; = \; R\sqrt{2} + 1 and so the maximum value of f ( x ) f(x) is R 2 + 1 R\sqrt{2} + 1 . Since this is equal to 11 11 , we deduce that R = 5 2 R = 5\sqrt{2} , so a 2 + b 2 = 50 a^2 + b^2 = \boxed{50} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...