a 2 + b 2 + c 2 a^2+b^2+c^2

Algebra Level 2

Given that a + b + c = 8 a+b+c=8 and a b + b c + c a = 2 ab+bc+ca=-2 , what is a 2 + b 2 + c 2 a^2+b^2+c^2 ?

72 64 68 66

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hi Bye
Oct 30, 2019

Note that ( a + b + c ) 2 = ( a 2 + b 2 + c 2 ) + 2 ( a b + b c + a c ) . (a+b+c)^2=\left(a^2+b^2+c^2\right)+2(ab+bc+ac). Since we are given the value of a + b + c a+b+c and a b + b c + c a , ab+bc+ca, we easily find that ( a 2 + b 2 + c 2 ) = 8 2 ( 4 ) = 68 . \left(a^2+b^2+c^2\right)=8^2-(-4)=\boxed{68}.

Henry U
Oct 30, 2019

( a + b + c ) 2 = a a + a b + a c + b a + b b + b c + c a + c b + c c ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + a c + b c ) ( 8 ) 2 = a 2 + b 2 + c 2 + 2 ( 2 ) a 2 + b 2 + c 2 = 8 2 + 2 2 \begin{aligned} && (a+b+c)^2 &= aa+ab+ac+ba+bb+bc+ca+cb+cc \\ \Leftrightarrow && ({\color{#3D99F6}a+b+c})^2 &= a^2+b^2+c^2+2({\color{#D61F06}ab+ac+bc}) \\ \Leftrightarrow && ({\color{#3D99F6}8})^2 &= a^2+b^2+c^2+2({\color{#D61F06}-2}) \\ \Leftrightarrow && a^2+b^2+c^2 &= 8^2 + 2 \cdot 2 \end{aligned}

a 2 + b 2 + c 2 = 68 \boxed{a^2+b^2+c^2 = 68}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...