a 3 + b 3 = ? a^{3} + b^{3}=?

Algebra Level 2

If a b + b a = 1 , \dfrac{a}{b} + \dfrac{b}{a} = 1, what is the value of a 3 + b 3 ? a^{3} + b^{3}?

2 0 1 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Naren Bhandari
Sep 1, 2017

a b + b a = 1 \begin{aligned} \frac{a}{b} + \frac{b}{a} = 1 \end{aligned} a 2 + b 2 = a b ( a 2 a b + b 2 ) = 0 \begin{aligned} a^2 +b^2 = ab \Rightarrow {\color{#3D99F6}(a^2-ab+b^2)}= 0\end{aligned}

We have a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) = ( a + b ) 0 0 \begin{aligned} a^3 + b^3 = ( a+b){\color{#3D99F6}(a^2-ab+b^2)} = (a+b)*0 \Rightarrow \boxed{0}\end{aligned}

on the second line I think you mean ( a 2 a b + b 2 ) (a^2-ab+b^2) instead of ( a 2 + a b + b 2 ) (a^2+ab+b^2)

Nazmus sakib - 3 years, 8 months ago
Md Zuhair
Aug 30, 2017

b a = x \dfrac{b}{a}=x

So

1 x + x = 1 \dfrac{1}{x}+x = 1

1 + x 2 x = 0 \implies 1+x^2-x=0

( x + 1 ) ( x 2 x + 1 ) = 0 \implies (x+1)(x^2-x+1)=0 [On one condition, such that x \neq -1]

x 3 + 1 = 0 \implies x^3+1=0

b 3 + a 3 = 0 \implies b^3+a^3=0

a 3 + b 3 = 0 \implies a^3+b^3=\boxed{0}

switching the numero uno in the base number scale is quite irrelevant... (a + b)^3 = (a+b)(a^2 -ab + b^2)... where the euler lemma is linear .... so .. (a,b) are skolem function here ... otherwise it's approbation is ri8.. cheers!

nibedan mukherjee - 3 years, 9 months ago
Chew-Seong Cheong
Aug 30, 2017

a b + b a = 1 a 2 + b 2 a b = 1 a 2 + b 2 = a b . . . ( 1 ) ( a + b ) 2 = a 2 + 2 a b + b 2 ( 1 ) : a 2 + b 2 = a b = 3 a b a + b = 3 a b . . . ( 2 ) \begin{aligned} \frac ab + \frac ba & = 1 \\ \frac {a^2+b^2}{ab} & = 1 \\ \implies \color{#3D99F6} a^2+b^2 & \color{#3D99F6} = ab & \color{#3D99F6}...(1) \\ (a+b)^2 & = {\color{#3D99F6}a^2} + 2ab + {\color{#3D99F6}b^2} & \small \color{#3D99F6} (1): a^2+b^2 = ab \\ & = 3ab \\ \implies \color{#D61F06} a+b & \color{#D61F06} = \sqrt{3ab} & \color{#D61F06} ...(2) \end{aligned}

Now, we have:

( a + b ) 3 = ( 3 a b ) 3 a 3 + 3 a 2 b + 3 a b 2 + b 3 = 3 a b 3 a b a 3 + 3 a b ( a + b ) + b 3 = 3 a b 3 a b ( 2 ) : a + b = 3 a b a 3 + 3 a b 3 a b + b 3 = 3 a b 3 a b a 3 + b 3 = 0 \begin{aligned} (a+b)^3 & = (\sqrt{3ab})^3 \\ a^3 + 3a^2b + 3ab^2 + b^3 & = 3ab\sqrt{3ab} \\ a^3 + 3ab{\color{#D61F06}(a+b)} + b^3 & = 3ab\sqrt{3ab} & \small \color{#D61F06} (2): a+b = \sqrt{3ab} \\ a^3 + 3ab{\color{#D61F06}\sqrt{3ab}} + b^3 & = 3ab\sqrt{3ab} \\ \implies a^3 + b^3 & = \boxed{0} \end{aligned}

did the same way

I Gede Arya Raditya Parameswara - 3 years, 6 months ago
Me Myself
Sep 27, 2017

All the solutions here are correct, but notice that a and b can't be simultaneously real , as you can see that a b + b a 2 \frac{a}{b}+\frac{b}{a}\geqslant 2 for all real a , b a,\ b .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...