a n + 1 = n n + 1 a n a_{n+1}=\frac{n}{n+1} a_n

Calculus Level 1

Sequence { a n } \{a_n\} satisfies a 1 = 5 , a n + 1 = n n + 1 a n , a_1=5, a_{n+1}=\frac{n}{n+1} a_n, where n n is a positive integer. What is the value of a 135 ? a_{135}?

1 27 \frac{1}{27} 1 25 \frac{1}{25} 1 26 \frac{1}{26} 1 24 \frac{1}{24}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Anish Puthuraya
Mar 9, 2014

a n + 1 = n n + 1 a n a_{n+1} = \frac{n}{n+1}a_n

( n + 1 ) a n + 1 = n a n (n+1)a_{n+1} = na_n

Substituting the values n \displaystyle n\in { 134 , 133 , , 1 \displaystyle 134,133,\ldots,1 },

135 a 135 = 134 a 134 \displaystyle 135\cdot a_{135} = 134\cdot a_{134}
134 a 134 = 133 a 133 \displaystyle 134\cdot a_{134} = 133\cdot a_{133}
\displaystyle\vdots
2 a 2 = a 1 \displaystyle 2\cdot a_2 = a_1

Using all these equations,

135 a 135 = a 1 135\cdot a_{135} = a_1 135 a 135 = 5 135\cdot a_{135} = 5

a 135 = 1 27 \Rightarrow a_{135} = \boxed{\frac{1}{27}}

Amazing! :)

Vikram Waradpande - 7 years, 3 months ago

Log in to reply

thanks!

Anish Puthuraya - 7 years, 3 months ago

Awesome..(:

Vaibhav Agrawal - 7 years, 1 month ago
Sharad Roy
May 13, 2014

When you solve for a 2 a_{2} , a 3 a_{3} and a 4 a_{4} you see pattern. And that comes out to be 5 n \frac{5}{n} . So, a 135 a_{135} will be 5 135 \frac{5}{135} . That comes out to be 1 27 \frac{1}{27}

Shikhar Jaiswal
Mar 10, 2014

a n + 1 = n n + 1 a n a_{n+1}=\frac {n}{n+1}a_{n}

a n = n 1 n a n 1 a_{n}=\frac {n-1}{n}a_{n-1}

a n 1 = n 2 n 1 a n 2 a_{n-1}=\frac {n-2}{n-1}a_{n-2}

. .

. .

a n + 1 = n ! ( n + 1 ) ! a 1 \Rightarrow a_{n+1}=\frac {n!}{(n+1)!}a_{1}

a n + 1 = 1 n + 1 a 1 \Rightarrow a_{n+1}=\frac {1}{n+1}a_{1}

now substituting n + 1 = 135 n+1=135

a 135 = 1 27 \boxed{a_{135}=\frac {1}{27}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...