a + b + a b a+b+ab

If a + b + a b = 2019 a+b+ab=2019 and a , b a,b are positive integers, find the sum of all possible values of a a .


The answer is 2253.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Daniel Baton
Jan 31, 2019

Solving for b gives b = 2019 a a + 1 b=\frac{2019 - a}{a + 1} , or b = 2019 a + 1 a a + 1 b=\frac{2019}{a+1} - \frac{a}{a+1}

Because b is an integer, 2019 a ( m o d a + 1 ) 2019 \equiv a \pmod{a+1}

a 1 ( m o d a + 1 ) a \equiv -1 \pmod{a+1} for any positive integer value of a a , so 2019 1 ( m o d a + 1 ) 2019 \equiv -1 \pmod{a+1} . Therefore, ( a + 1 ) (a+1) is a divisor of 2020 2020

The factors of 2020 2020 are { 1 , 2 , 4 , 5 , 10 , 20 , 101 , 202 , 404 , 505 , 1010 , 2020 1, 2, 4, 5, 10, 20, 101, 202, 404, 505, 1010, 2020 }, so these are the possible values of ( a + 1 ) (a+1) . However, 1 1 doesn't work because a a would be 0 0 (not positive), and 2020 2020 doesn't work because b b would be 0 0 . Subtracting one from each of the remaining numbers leaves { 1 , 3 , 4 , 9 , 19 , 100 , 201 , 403 , 504 , 1009 1, 3, 4, 9, 19, 100, 201, 403, 504, 1009 } as the possible values of a a .

1 + 3 + 4 + 9 + 19 + 100 + 201 + 403 + 504 + 1009 = 2 , 253 1+3+4+9+19+100+201+403+504+1009 = \boxed{2,253}

I think 2019mod(a+1) should be -1. Pls correct me if I m wrong

Mr. India - 2 years, 4 months ago

Thank you, I fixed the error

Daniel Baton - 2 years, 2 months ago
Oded Barash
Feb 8, 2019

a + b + a b = 2019 a + b ( a + 1 ) = 2019 a + 1 + b ( a + 1 ) = 2020 ( a + 1 ) ( b + 1 ) = 2020 a+b+ab=2019\Rightarrow a+b(a+1)=2019\Rightarrow a+1+b(a+1)=2020\Rightarrow (a+1)(b+1)=2020

K T
Aug 19, 2019

Adding 1 to both sides, it is rewritten as ( a + 1 ) ( b + 1 ) = 2020 (a+1)(b+1)=2020 . So a + 1 a+1 must be a factor of 2020 2020 .

All factors of 2020 = 2 2 × 5 × 101 2020=2^2×5×101 are 1 , 2 , 4 , 5 , 10 , 20 , 101 , 202 , 404 , 505 , 1010 , 2020 1,2,4,5,10,20,101,202,404,505,1010,2020 .

Since a and b must be positive, both factors must be greater than 1, and the factorization 1×2020 is discarded.

The sum of all possible a then is equals 1 + 3 + 4 + 9 + 19 + 100 + 201 + 403 + 504 + 1009 = 2253 1+3+4+9+19+100+ 201+403+504+1009=\boxed{2253} .

Abraham Zhang
Feb 11, 2019

b = 2020 a + 1 1 a + 1 2020 a { 1 , 3 , 4 , 9 , 19 , 100 , 201 , 403 , 504 , 1009 } ( a { 0 , 2019 } a , b Z + ) a = 2253 \begin{aligned} b&=\frac{2020}{a+1}-1\\ a+1&\mid2020\\ a&\in\{1,3,4,9,19,100,201,403,504,1009\}\qquad(a\notin\{0,2019\}\because a,b\in\mathbb Z^+)\\ \sum a&=2253 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...