A , B , C A,B,C , Easy As 1 , 2 , 3 1,2,3 (Do Re Mi)

The number A B C X Y Z \overline{ABC\dots XYZ} consists of 26 distinct variables, consisting of positive digits, all in alphabetical order. When it is multiplied by 4 4 , the result is Z Y X C B A \overline{ZYX\dots CBA} , where the digits of the original number are all reversed.

It is possible for 21999 9978 4 = 87999 99912 21999\dots 9978 \cdot 4 = 87999\dots 99912 . Does there exist another possible expression for A B C X Y Z \overline{ABC\dots XYZ} ?

Inspiration: (1) , (2) , (3)

Bonus: Prove or disprove there exist more than one distinct expression.

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Jan 22, 2021

Here are few possible expressions:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
21999999999782199999999978
21999999978217821999999978
21999999782199782199999978
21999997821999978219999978
21999997821782178219999978
21999978219999997821999978
21999978219782197821999978
21999782199999999782199978
21999782199782199782199978
21999782178217821782199978
21997821999999999978219978
21997821999782199978219978
21997821978217821978219978
21997821782199782178219978
21978219999999999997821978
21978219999782199997821978
21978219978217821997821978
21978219782199782197821978
21978217821999978217821978
21978217821782178217821978
21782199999999999999782178
21782199999782199999782178
21782199978217821999782178
21782199782199782199782178
21782197821999978219782178
21782197821782178219782178
21782178219999997821782178
21782178219782197821782178 

Are there any that don't start with 2 2 ?

Chris Lewis - 4 months, 3 weeks ago

Log in to reply

No, because if y y is the expression, y y and 4 y 4y both have 26 26 digits, so 4 A < 10 4A < 10 , which means A A is either 1 1 or 2 2 . However, since 4 y 4y ends in A A and must be even, A A must be 2 2 . (There was a similar proof for this in the solution section of the third inspiration link.)

David Vreken - 4 months, 3 weeks ago

The problem asks for numbers 'consisting of positive digits.'

Matthew Feig - 4 months, 2 weeks ago

Log in to reply

Thanks, I must have missed that! I updated my answer to show only the ones I found with positive digits.

David Vreken - 4 months, 2 weeks ago
Matthew Feig
Jan 25, 2021

Let S S be the set of all natural numbers that have the property described in the problem. S { n N 4 n and n have the same decimal digits in reverse order } S \equiv \{ n \in \N \ | \ 4n \ \text{and} \ n \ \text{have the same decimal digits in reverse order} \} The question asks about members of S S with 26 26 non-zero digits.


  • Direct calculation shows that a = 2178 , b = 21978 , c = 219978 a = 2178, b= 21978, c=219978 all belong to S S . 4 × 2178 = 8712 4 × 21978 = 87912 4 × 219978 = 879912 \begin{aligned} 4 \times 2178 &= 8712 \\ 4 \times 21978 &= 87912 \\ 4 \times 219978 &= 879912 \end{aligned}
  • It is also not hard to prove that we can concatenate short members of S S to create longer members of S S . Let x y x \Vert y denote the concatenation (or the stringing together end-to-end of the decimal representations) of x x and y y . Claim: If x S and y S , then x x S and x y x S . \text{Claim: If } x \in S \text{ and } y \in S, \text{ then } x \Vert x \in S \text{ and } x \Vert y \Vert x \in S .

Based on the two points above, we can build new members of S S out of a , b , c a, b, c with 26 26 digits. So the answer is YES \boxed{\text{YES}} .

m = 21978 21978 219978 21978 21978 = b b c b b S and has 5 + 5 + 6 + 5 + 5 = 26 digits. n = 2178 219978 219978 219978 2178 = a c c c a S and has 4 + 6 + 6 + 6 + 4 = 26 digits. p = 219978 2178 219978 2178 219978 = c a c a c S and has 6 + 4 + 6 + 4 + 6 = 26 digits. q = 2178 2178 21978 21978 2178 2178 = a a b b a a S and has 4 + 4 + 5 + 5 + 4 + 4 = 26 digits. \begin{aligned} m &= \blue{21978} \ \red{21978} \ \green{219978} \ \red{21978} \ \blue{21978} = b \Vert b \Vert c \Vert b \Vert b \in S &&\text{ and has } 5 + 5 + 6 + 5 + 5 = 26 \text{ digits.} \\ n &= \blue{2178} \ \red{219978} \ \green{219978} \ \red{219978} \ \blue{2178} = a \Vert c \Vert c \Vert c \Vert a \in S &&\text{ and has } 4 + 6 + 6 + 6 + 4 = 26 \text{ digits.} \\ p &= \blue{219978} \ \red{2178} \ \green{219978} \ \red{2178} \ \blue{219978} = c \Vert a \Vert c \Vert a \Vert c \in S &&\text{ and has } 6 + 4 + 6 + 4 + 6 = 26 \text{ digits.} \\ q &= \blue{2178} \ \red{2178} \ \green{21978} \ \green{21978} \ \red{2178} \ \blue{2178} = a \Vert a \Vert b \Vert b \Vert a \Vert a \in S &&\text{ and has } 4 + 4 + 5 + 5 + 4 + 4 = 26 \text{ digits.} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...