a b c abc is the one

Algebra Level 3

a 3 ( b 2 + c ) + b 3 ( c 2 + a ) + c 3 ( a 2 + b ) \large { a }^{ 3 }({ b }^{ 2 }+c)+b^{ 3 }({ c }^{ 2 }+a)+{ c }^{ 3 }({ a }^{ 2 }+b)

If a , b a,b and c c are positive real numbers satisfying a b c = 1 abc=1 , find the minimum value of the expression above.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 22, 2016

Using AM-GM inequality , we have:

a 3 ( b 2 + c ) + b 3 ( c 2 + a ) + c 3 ( a 2 + b ) = a 3 b 2 + a 3 c + b 3 c 2 + b 3 a + c 3 a 2 + c 3 b 6 ( a b c ) 9 6 = 6 Since a b c = 1 \begin{aligned} a^3(b^2+c)+b^3(c^2+a)+c^3(a^2+b) & = a^3b^2+a^3c + b^3c^2+b^3a+c^3a^2+c^3b \ge 6\sqrt [6] {(\color{#3D99F6}{abc})^9} = \boxed{6} \quad \quad \small \color{#3D99F6}{\text{Since }abc = 1} \end{aligned}

Great solution, sir!

Ciprian Florea - 5 years ago
Ciprian Florea
May 22, 2016

Relevant wiki: Arithmetic Mean - Geometric Mean

From AM-GM we have: a 2 + b 2 a b ; b 2 + c 2 b c ; c 2 + a 2 c a = > = > ( a 2 + b ) ( b 2 + c ) ( c 2 + a ) 8 a b c a b c = 8 < = > < = > a 2 b 2 c 2 + a 3 b 2 + a 2 c 3 + a 3 c + b 3 c 2 + b 3 a + b c 3 + a b c 8 < = > < = > 1 + a 3 b 2 + a 2 c 3 + a 3 c + b 3 c 2 + b 3 a + b c 3 + 1 8 < = > < = > a 3 b 2 + a 2 c 3 + a 3 c + b 3 c 2 + b 3 a + b c 3 6 < = > < = > a 3 ( b 2 + c ) + b 3 ( c 2 + a ) + c 3 ( a 2 + b ) 6. \\ \quad { a }^{ 2 }+b\ge 2a\sqrt { b } ;\quad b^{ 2 }+c\ge 2b\sqrt { c } ;\quad c^{ 2 }+a\ge 2c\sqrt { a } \quad =>\\ =>\quad ({ a }^{ 2 }+b)({ b }^{ 2 }+c)({ c }^{ 2 }+a)\ge 8abc\sqrt { abc } =8\quad <=>\\ <=>\quad { a }^{ 2 }{ b }^{ 2 }{ c }^{ 2 }+{ a }^{ 3 }{ b }^{ 2 }+{ a }^{ 2 }{ c }^{ 3 }+{ a }^{ 3 }{ c }+{ b }^{ 3 }{ c }^{ 2 }+{ b }^{ 3 }{ a }+{ b }{ c }^{ 3 }+abc\ge 8\quad <=>\\ <=>\quad 1+{ a }^{ 3 }{ b }^{ 2 }+{ a }^{ 2 }{ c }^{ 3 }+{ a }^{ 3 }{ c }+{ b }^{ 3 }{ c }^{ 2 }+{ b }^{ 3 }{ a }+{ b }{ c }^{ 3 }+1\ge 8\quad <=>\\ <=>\quad { a }^{ 3 }{ b }^{ 2 }+{ a }^{ 2 }{ c }^{ 3 }+{ a }^{ 3 }{ c }+{ b }^{ 3 }{ c }^{ 2 }+{ b }^{ 3 }{ a }+{ b }{ c }^{ 3 }\ge 6\quad <=>\\ <=>\quad { a }^{ 3 }({ b }^{ 2 }+c)+b^{ 3 }({ c }^{ 2 }+a)+{ c }^{ 3 }({ a }^{ 2 }+b)\ge 6.\\

Equality holds when a = b = c a=b=c , hence the answer is 6 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...