Alphabets

Algebra Level 2

Find the minimum value of ( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 + d ) (1+a)(1+b)(1+c)(1+d) if a , b , c a,b,c and d d are positive real numbers satisfying a b c d = 1 abcd=1 .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 + d ) = 1 + a + b + c + d + a b + a c + a d + b c + b d + c d + a b c + a b d + a c d + b c d + a b c d (1+a)(1+b)(1+c)(1+d) \\ = 1 + a+b+c+d +ab+ac+ad+bc+bd+cd+abc +abd+acd+bcd+abcd

Using the AM-GM inequality, we have:

1 + a + b + c + d + a b + a c + a d + b c + b d + c d + a b c + a b d + a c d + b c d + a b c d 16 a b c d = 16 \small 1 + a+b+c+d +ab+ac+ad+bc+bd+cd+abc +abd+acd+bcd+abcd \ge 16 \sqrt{abcd} = 16

Equality is established when a = b = c = d = 1 a=b=c=d=1

( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 + d ) 16 \implies (1+a)(1+b)(1+c)(1+d) \ge \boxed{16}

Sam Bealing
May 8, 2016

By AM-GM: 1 + a 2 a × 1 = 2 a 1+a \geq 2 \sqrt{a \times 1}=2 \sqrt{a} and similarly for b , c , d b,c,d :

( 1 + a ) ( 1 + b ) ( 1 + c ) ( 1 + d ) 16 a b c d = 16 (1+a)(1+b)(1+c)(1+d) \geq 16 \sqrt{abcd}=\boxed{16}

Moderator note:

Simple standard approach.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...